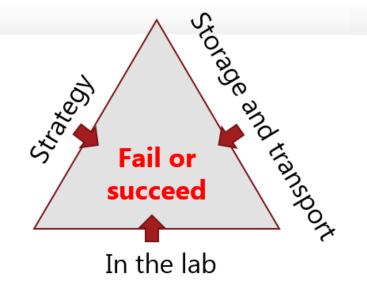
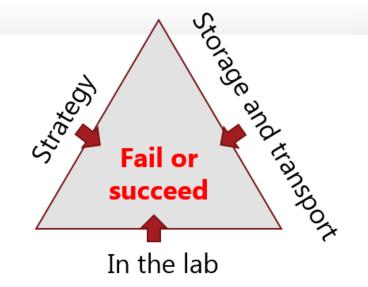
# PRRSV Diagnostics – find the needle in the haystack!


Lars Erik Larsen Professor UCPH



KØBENHAVNS UNIVERSITET

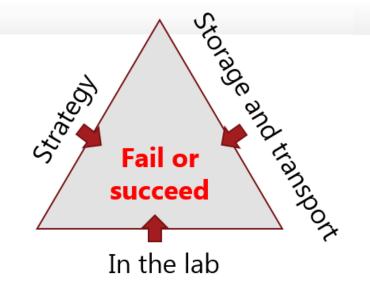



- Prior to sampling decide strategy
- In the herd and to the laboratory
- In the laboratory



| Strategy                       |
|--------------------------------|
| What is the goal and budget?   |
| Consequence of false negatives |
| No of samples                  |
| Type of samples                |
| Strategy (random, targeted,)   |
| Interval between samplings     |
| Number of sample times         |
|                                |

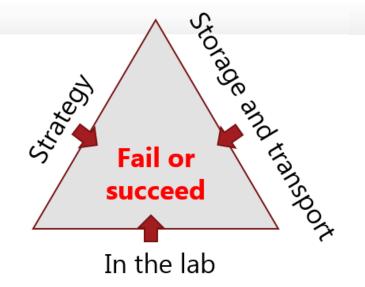



- Prior to sampling decide strategy
- In the herd and to the laboratory
- In the laboratory



| In the herd                          |
|--------------------------------------|
| Volume of sample                     |
| Time and temperature during sampling |
| Freeze-thaw methods                  |
| Cross contaminations                 |
| Storage temperature and time         |
| Temperature during transport         |
| Information to the lab!              |
|                                      |




- Prior to sampling decide strategy
- In the herd and to the laboratory
- In the laboratory



| In the Lab                                |
|-------------------------------------------|
| Validation of RNA extraction              |
| Test for inhibition                       |
| Detection limit and linear range          |
| Ring trials – benchmark to other labs     |
| Consequence of pooling                    |
| Communication of border-line test results |
|                                           |



- Prior to sampling decide strategy
- In the herd and to the laboratory
- In the laboratory



| Strategy                       | In the herd                          | In the Lab                                |
|--------------------------------|--------------------------------------|-------------------------------------------|
| What is the goal and budget?   | Volume of sample                     | Validation of RNA extraction              |
| Consequence of false negatives | Time and temperature during sampling | Test for inhibition                       |
| No of samples                  | Freeze-thaw methods                  | Detection limit and linear range          |
| Type of samples                | Cross contaminations                 | Ring trials – benchmark to other labs     |
| Strategy (random, targeted,)   | Storage temperature and time         | Consequence of pooling                    |
| Interval between samplings     | Temperature during transport         | Communication of border-line test results |
| Number of sample times         | Information to the lab!              |                                           |

# Lots of data in papers and from experienced wizards



ary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Jowa State University, Ames. 14, 50011, USA

# Strategy: Goal and sample type





#### Gestation



#### • TTS

#### Farrowing unit





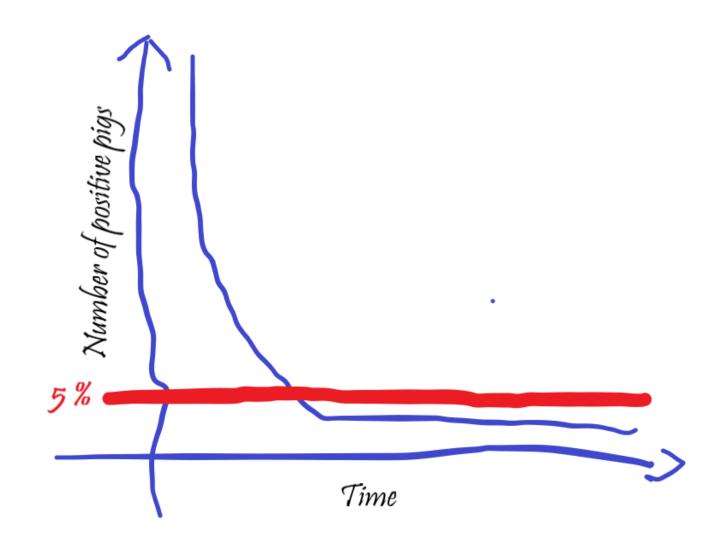
- TTS from dead pigs
- PF
- OF/FOF
- Serum

#### Focus today



#### **Nusery pigs**

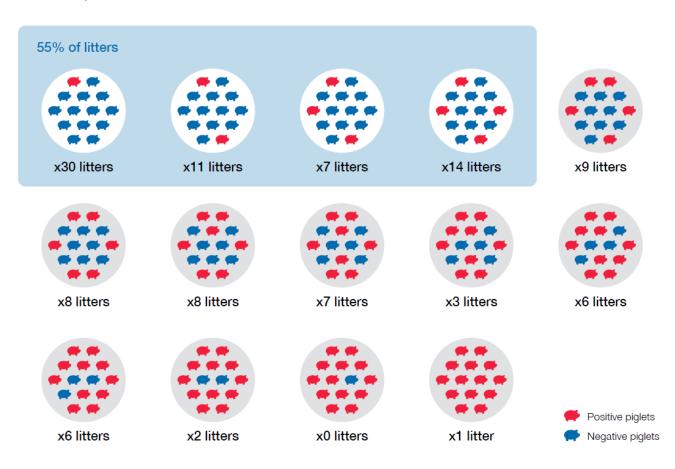
National PRRS REDUKTION




- OF/FOF
- Serum
- (TTS from dead pigs)



From Nicolai Weber LFG with permission


### Prevalence of positive weaning age pigs over time during elimination



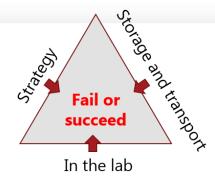

## And they are not evenly distributed

Figure 7. Number of PRRSv-viremic piglets in breeding herd.

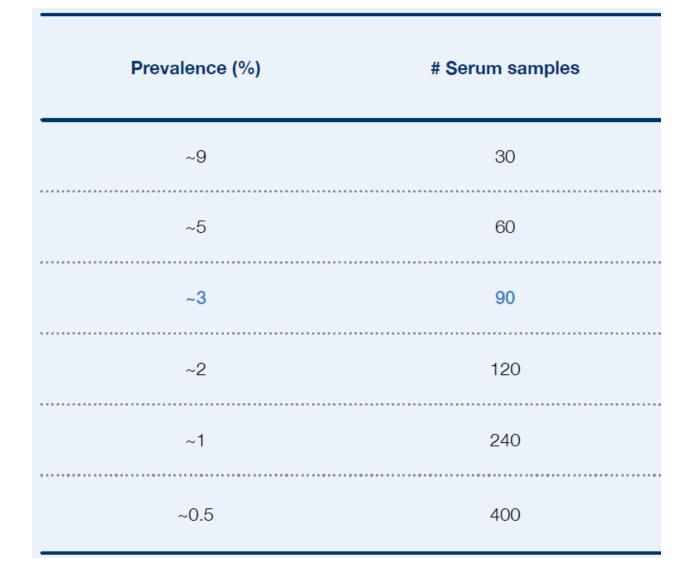
A cross-sectional study was performed in **12 breed-to-wean sow farms** in which serum samples (n = 4510) were collected from all piglets in selected litters (n = 422) in **23 farrowing rooms** and tested individually for PRRSv RNA. In total, **112 litters were tested positive.** This image below shows how PRRSv was distributed in the these positive litters.



# The diagnostic paradox



To be sure that you detect the few positive pigs you need to:


First: Sample at least one of the positive pigs

AND!

### **Next: Detect the virus RNA in that sample**

What can possible go wrong

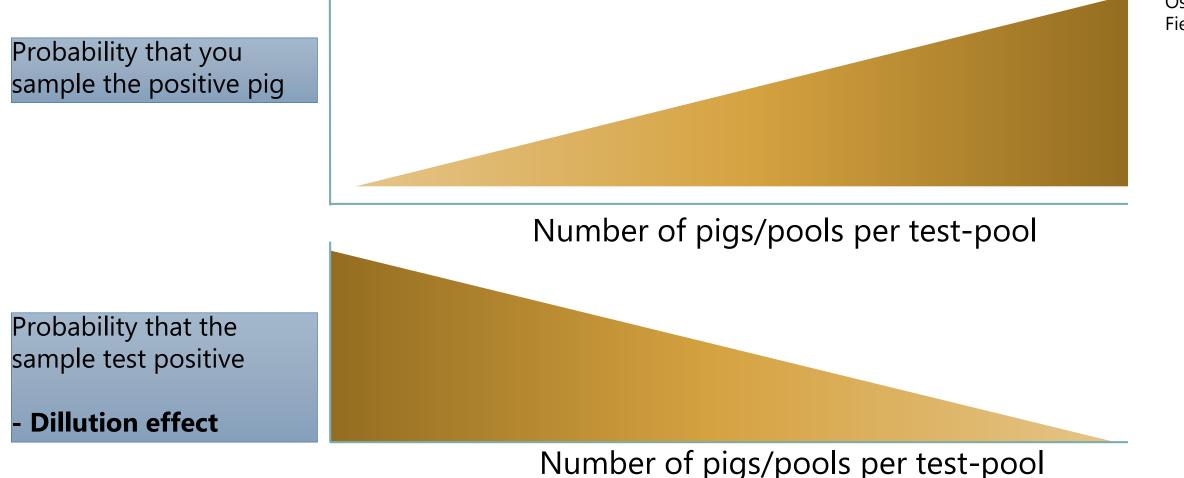
### **Challenge: Too expensive to collect and test many serum samples**



### Challenge: Also many FOF samples are needed when the prevalence is low

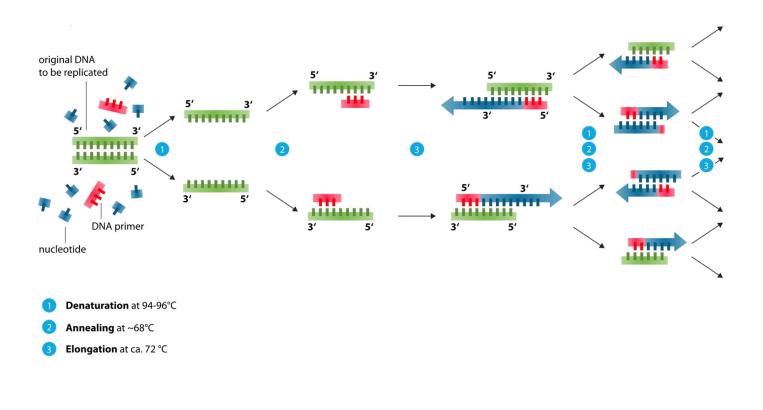
| When a litter is PRRSv-positive,<br>how many piglets (within the litter)<br>are usually positive?       | Table 2. Number of serum and FOF sa prevalence scenarios. | amples to achieve 95% confidence to | detect PRRSv at different |
|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------|---------------------------|
| And how many samples do I need to collect to detect<br>PRRSv at different prevalences (95% confidence)? | Prevalence (%)                                            | # Serum samples                     | # FOF samples             |
|                                                                                                         | ~9                                                        | 30                                  | 5                         |
|                                                                                                         | ~5                                                        | 60                                  | 7                         |
|                                                                                                         | ~3                                                        | 90                                  | 10                        |
|                                                                                                         | ~2                                                        | 120                                 | 15                        |
|                                                                                                         | ~1                                                        | 240                                 | 30                        |
|                                                                                                         | ~0.5                                                      | 400                                 | 40                        |

Example: 90 serum samples or 10 FOF, per air space, is needed to achieve 95% confidence to detect at least 1 sample positive when prevalence is 3% or higher.


Note the high sample size required for serum compared to FOF for all prevalence scenarios. One of the reasons is that FOF includes biological sample from multiple animals.



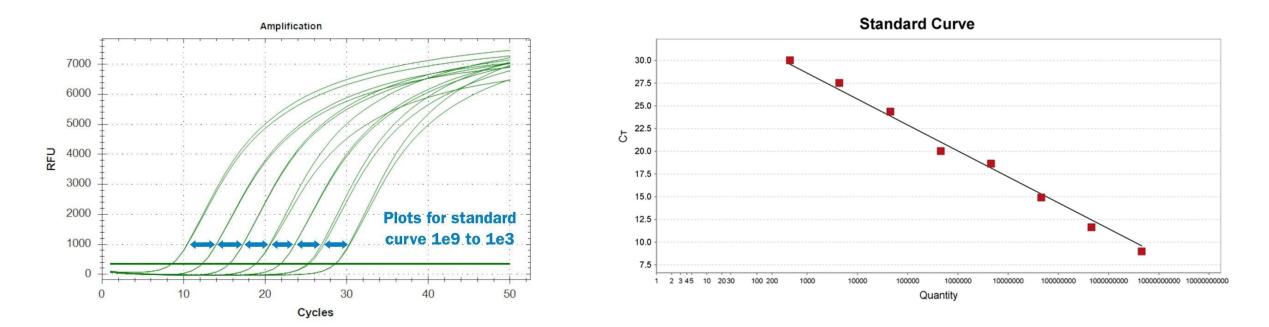
# Solution: Pooling of samples! – but watch out!




Henry Osemeke Field Epi - ISU



From Nicolai Weber LFG with permission


# Sidestep: PCR basic



| CYCLE | AMOUNT OF DNA   |
|-------|-----------------|
|       | 100% EFFICIENCY |
| 0     | 1               |
| 1     | 2               |
| 2     | 4               |
| 3     | 8               |
| 4     | 16              |
| 5     | 32              |
| 6     | 64              |
| 7     | 128             |
| 8     | 256             |
| 9     | 512             |
| 10    | 1,024           |
| 11    | 2,048           |
| 12    | 4,096           |
| 13    | 8,192           |
| 14    | 16,384          |
| 15    | 32,768          |
| 16    | 65,536          |
| 17    | 131,072         |
| 18    | 262,144         |
| 19    | 524,288         |
| 20    | 1,048,576       |
| 21    | 2,097,152       |
| 22    | 4,194,304       |
| 23    | 8,388,608       |
| 24    | 16,777,216      |
| 25    | 33,554,432      |
| 26    | 67,108,864      |
| 27    | 134,217,728     |
| 28    | 268,435,456     |
| 29    | 536,870,912     |
| 30    | 1,073,741,824   |

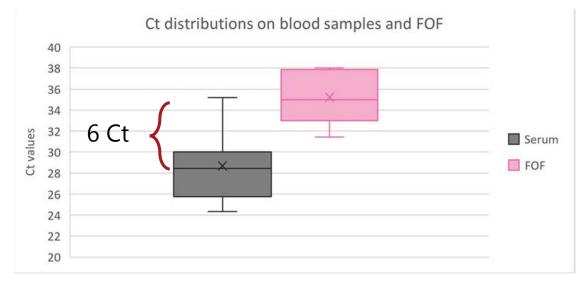
= 1.4 trillion tonnes = 2000 times the yearly global grain production!

### Sidestep: PCR basic



# For each 10-fold dilution the Ct value increases with 3.3 (if the test has an efficacy of 100 %)

# Serum versus oral fluids (OF) or family oral fluids (FOF)


**MDPI** 



#### Brief Report

PRRSV Detection by qPCR on Serum Samples Collected in Due-to-Wean Piglets in Five Positive Stable Breeding Herds Following a Sow Mass Vaccination with a Modified Live Vaccine: A Descriptive Study

Arnaud Lebret <sup>1,2,\*</sup><sup>(D)</sup>, Valérie Normand <sup>1,2</sup>, Charlotte Teixeira Costa <sup>2</sup>, Ingrid Messager <sup>3</sup>, Pauline Berton <sup>1</sup>, Mathieu Brissonnier <sup>1</sup>, Théo Nicolazo <sup>2</sup> and Gwenaël Boulbria <sup>1,2</sup><sup>(D)</sup>



**Figure 1.** Distribution of cycle threshold (Ct) values for detection of PRRSV-1 from positive blood samples and positive family oral fluids (FOF) samples using RT-qPCR. Boxplots show median, quartiles, minimum and maximum values.

Table 2. Comparison of PRRSV-1 RT-qPCR detection in serum and FOF from litters of due-to-wean piglets.

|     |       | Serum |     |       |  |
|-----|-------|-------|-----|-------|--|
|     |       | NEG   | POS | Total |  |
|     | NEG   | 103   | 7   | 110   |  |
| FOF | POS   | 3     | 6   | 9     |  |
|     | Total | 106   | 13  | 119   |  |

# BUT! FOF has been shown to be reliable for mass testing

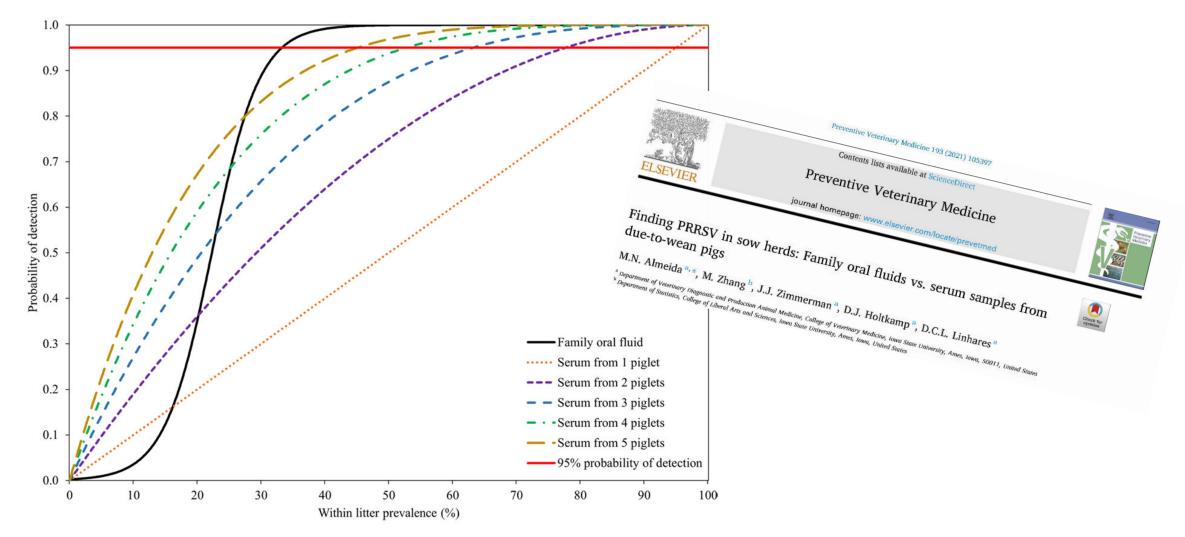



Fig. 1. Probability of PRRSV RNA detection using family oral fluids (FOF) according to number of viremic piglets within a litter.

### Back to pooling – success depends on the Ct value of the positive pig!

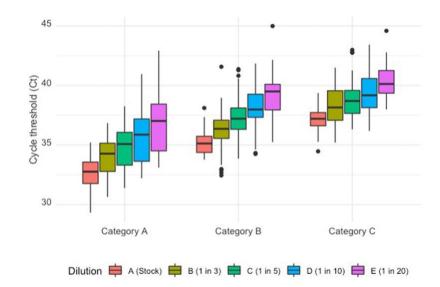
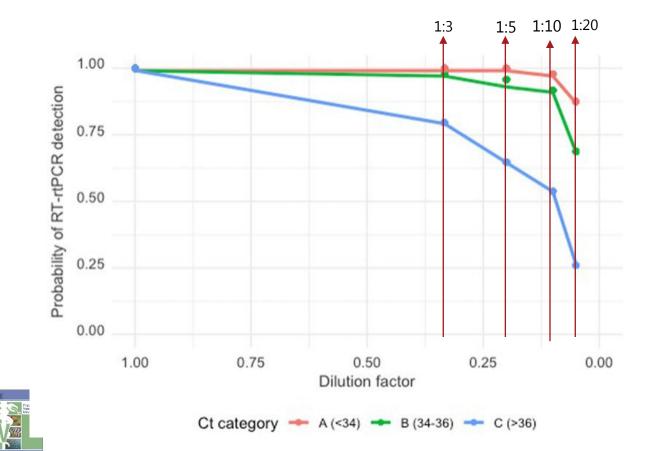


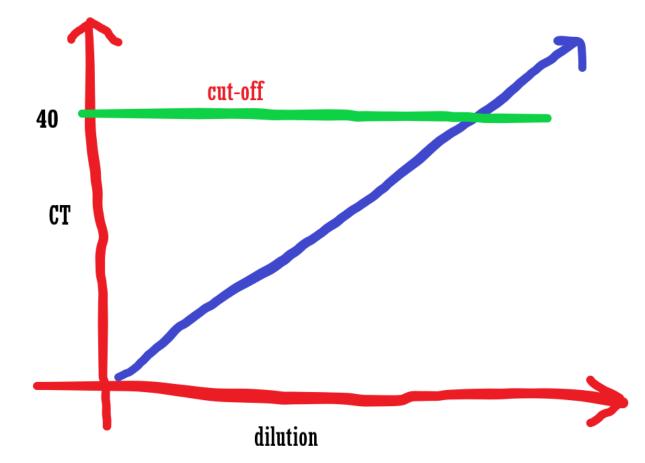

Fig. 1. PRRSV RT-rtPCR Ct changes per dilution level for each of the 3 Ct value categories.


# Preventive Veterinary Medicine 206 (2022) 105701 Contents lists available at ScienceDirect Preventive Veterinary Medicine ELSEVIER journal homepage: www.elsevier.com/locate/prevatmed

#### Effect of pooling family oral fluids on the probability of PRRSV RNA detection by RT-rtPCR

Check for updates

Onyekachukwu H. Osemeke<sup>a</sup>, Eduardo de Freitas Costa<sup>c</sup>, Marcelo N. Almeida<sup>a</sup>, Giovani Trevisan<sup>a</sup>, Arka P. Ghosh<sup>b</sup>, Gustavo S. Silva<sup>a</sup>, Daniel C.L. Linhares<sup>a,\*</sup>


<sup>a</sup> Venerinary Diagnostic and Production Animal Medicine, Gollege of Venerinary Medicine, Iowa State University, Ames, IA, USA <sup>b</sup> Department of Statistics, Navo Statu University, Ames, IA, USA <sup>c</sup> Oparament of Epidemiology, Bioinformatics and Animal Models, Wageningen Bioveterinary Research, Lebystad, the Netherlands



# The billion dollar question in pooling

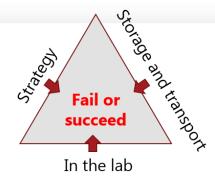


# How positive is the positive pigs?



**Table 3.** Ct values of sera and FOF samples (with batch identification) tested individually, pooled by 3 and pooled by 5 (ND = not done).

|                          |       | SERA             |                   |                   |                          | F     | OF               |                   |                   |
|--------------------------|-------|------------------|-------------------|-------------------|--------------------------|-------|------------------|-------------------|-------------------|
| Sample<br>Identification | Batch | Ct<br>Individual | Ct<br>Pool<br>1:3 | Ct<br>Pool<br>1:5 | Sample<br>Identification | Batch | Ct<br>Individual | Ct<br>Pool<br>1:3 | Ct<br>Pool<br>1:5 |
| Serum-1                  | 1     | 24.9             | 28                | 28.9              | FOF-1                    | 1     | 31.4             | 32.5              | 34.8              |
| Serum-2                  | 1     | 24.3             | 28                | 28.9              | FOF-2                    | 2     | 33               | >40               | >40               |
| Serum-3                  | 1     | 25.5             | 28.3              | 29.4              | FOF-3                    | 2     | 38               | >40               | >40               |
| Serum-4                  | 2     | 26               | 28.4              | 29.2              | FOF-4                    | 2     | 38               | >40               | >40               |
| Serum-5                  | 2     | 33               | 34.4              | 37                | FOF-5                    | 2     | 35               | 35.4              | >40               |
| Serum-6                  | 2     | 28               | 31.2              | 32                | FOF-6                    | 2     | 33               | >40               | >40               |
| Serum-7                  | 2     | 30               | 33.8              | 34.9              | FOF-7                    | 3     | 36.8             | >40               | >40               |
| Serum-8                  | 2     | 30               | 32.8              | 34.3              | FOF-8                    | 3     | 37.8             | >40               | >40               |
| Serum-9                  | 2     | 30               | >40               | >40               | FOF-9                    | 4     | 34.2             | >40               | >40               |
| Serum-10                 | 2     | 29               | ND                | ND                |                          |       |                  |                   |                   |
| Serum-11                 | 3     | 35.2             | >40               | >40               |                          |       |                  |                   |                   |
| Serum-12                 | 3     | 28.4             | 30.7              | 31.6              |                          |       |                  |                   |                   |


Lebret et al. 2023

# Limited data from Denmark

• Ct values on samples tested at Kjellerup and SSI (no info on pool size)

| Spyt      | SSI | VLK |
|-----------|-----|-----|
| Ct min    | 28  | 32  |
| Ct max    | 36  | 37  |
| Ct middel | 35  | 32  |
| Ct median | 35  | 32  |
| PF        |     |     |
| Ct min    | 22  | 23  |
| Ct max    | 42  | 37  |
| Ct middel | 34  | 31  |
| Ct median | 35  | 32  |
| serum     |     |     |
| Ct min    | 14  | 25  |
| Ct max    | 40  | 36  |
| Ct middel | 29  | 31  |
| Ct median | 29  | 36  |

# The diagnostic paradox



To be sure that you detect the few positive pigs you need to:

### First: Sample at least one of the positive pigs

AND!

**Next: Detect the virus RNA in that sample** 

## What can possible go wrong

#### In the herd

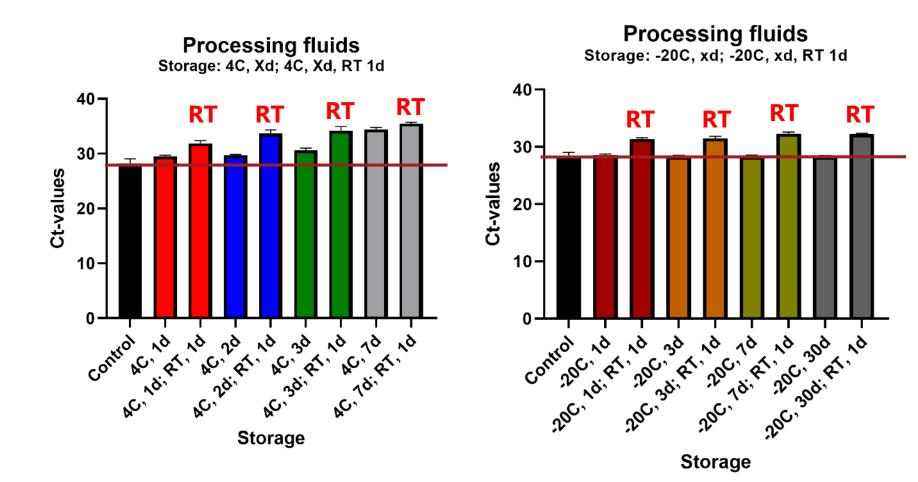
Volume of sample

Time and temperature during sampling

Freeze-thaw methods

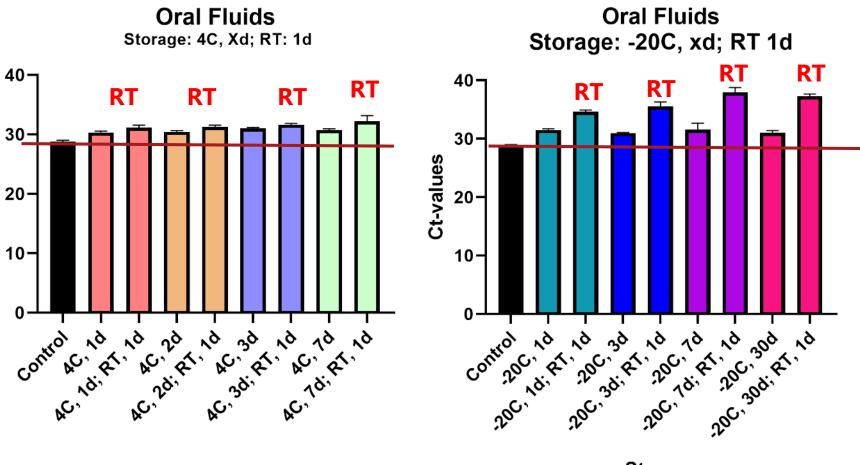
Cross contaminations

Storage temperature and time

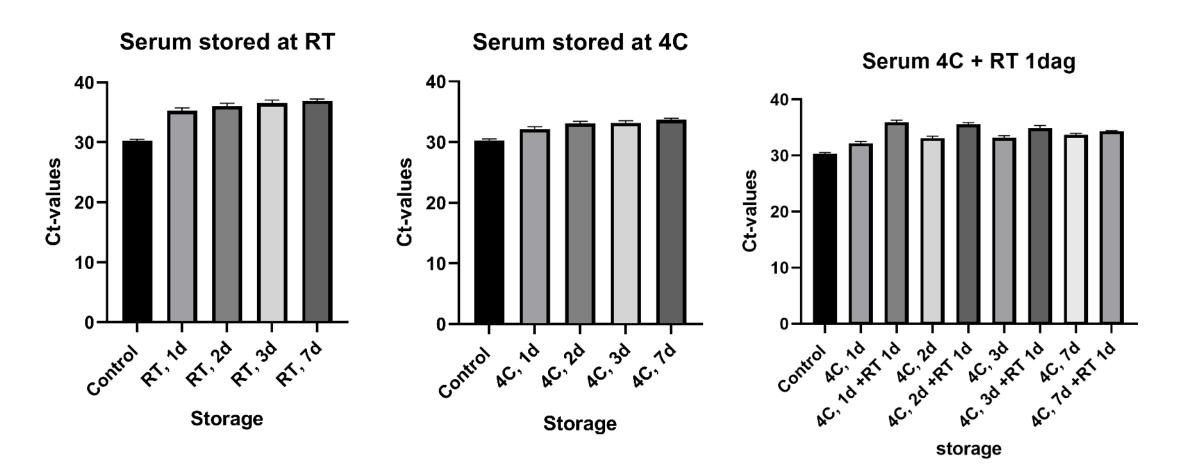

Temperature during transport

Information to the lab!

# Storage of samples

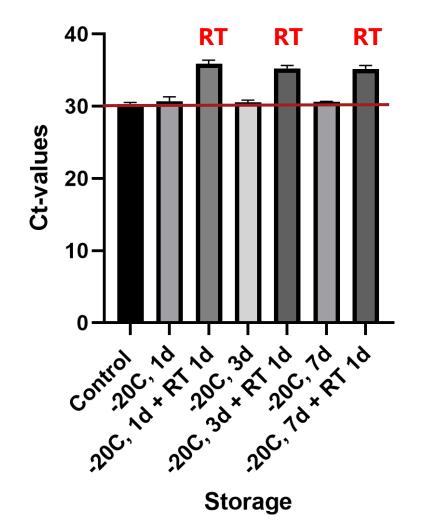

- PF, OF and serum spiked with an PRRSV-1 virus isolate
- Storage combinations
- 4C for 1, 2, 3 and 7 days
- 4C i 1, 2, 3 for 7 days + at Room Temperature (RT) 1 day
- -20C for 1, 3, 7 and 30 days
- -20C for 1, 3, 7 and 30 days + RT 1 day
- Only serum
- RT for 1, 2, 3 and 7 days
- -80C for 1, 3, 7 and 30 days

### Results processing fluids (4C and -20C)




04-11-2023 25

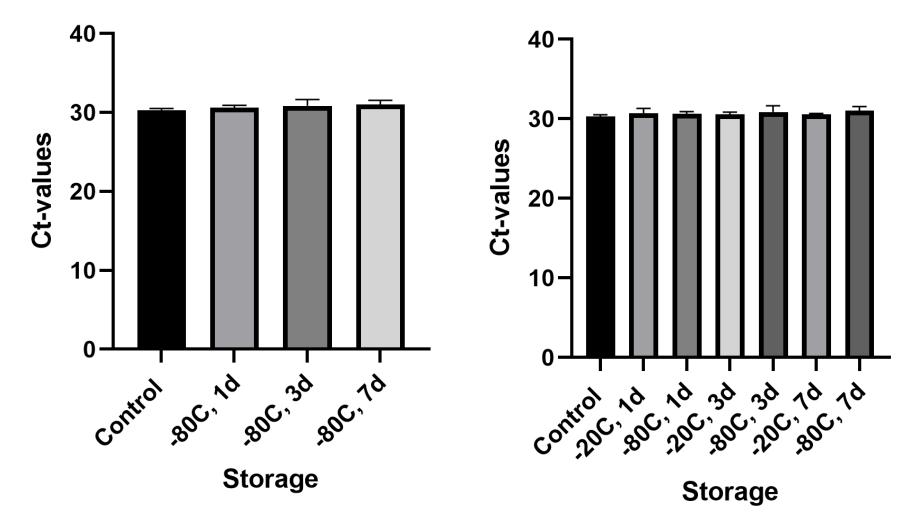
### Results oral fluids (4C og -20C)




### **Results serum**



## Results serum (-20 C)


Serum -20C xd, -20C xd + RT 1d



## Results serum (-80C)

Serum stored at -80C

Serum -20 vs -80C



# Conclusion on sample storage

- The amount of virus in blood samples stored for one day at room temperature decreased significantly
- For **PF and OF, the drop was even greater**!
- All samples should therefore be kept refrigerated ASAP after collection and preferable also during sampling
- PF bags and OF bags should either be sent frozen in a cooling bag or left in the **refrigerator for thawing**
- Storage at 4C can be accepted for shorter periods no more than 1 day
- Storage at -20C vs -80C showed no difference in the period tested
- 1-2 freeze-thaw cycles do not have significant effect

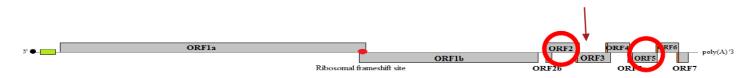
# Micowave and heated floors for thawing is absolutely NO GO!!!

# A theoretical example for a worse case scenario

- Loss in Ct compared to immediate test of blood from the positive pig
  - OF/FOF instead of serum: 6 Ct
  - Pooling 1:10 3 Ct
  - Wrong storage in herd: 2 Ct
  - Thawing at RT for 1 day: 4 Ct
  - <u>Total 15 Ct</u>
- Thus, the viraemic pig should have a viral serum load corresponding to a Ct value of 25 or below to test positive (at Ct 40 as cut off)

# Sum up

- Prioritize intensive sampling when the consequence are high
- Many samples are needed at low prevalences
  - Use of pooling increase the probability of sampling the positive pig but comes with a price!
  - The risk of false negative conclusion of weaner pig status can be mitigated by:
    - Correct storage of the samples during and after sampling; and during transport
    - Repeat the sampling according to the recommendations at least four consecutive negative samplings
    - Make sure to cover all sections the viraemic pigs may cluster
    - Combine serum/FOF with test of dead animals (TTS) relatively cheap








### PRRSV sekventering

- Vi tilbyder PRRSV-sekventering af diagnostiske prøver (SSI, Kjellerup) gratis (finansieret af Svineafgiftsfonden)
- Vi vil gerne have lidt baggrunds information: kliniske tegn, seneste ændringer fra neg ->pos, vaccinationsstatus mm
- PRRSV-1: partiel ORF2 and ORF5 som udgangspunkt



- PRRSV-2: ORF5
- ORF2-7 og fuld genom på udvalgte prøver

### PRRSV laboratorie svar

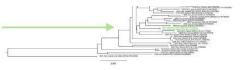
| Svarrapport status                             |                              |                                       | STATENS<br>SERUM<br>INSTITUT                    | KØBENHAVNS<br>UNIVERSITET |
|------------------------------------------------|------------------------------|---------------------------------------|-------------------------------------------------|---------------------------|
|                                                |                              |                                       | Sagsnr.                                         | 2023-04530                |
| Resultat kom                                   | nentar                       |                                       |                                                 |                           |
|                                                |                              | 96,64 % identisk<br>rcilis MLV (MT311 | i partiel ORF2 (684 nukleotider) og 96<br>646). | ,37 % identisk i ORF5 til |
| Konklusion:<br>Den sekventer                   | ede virus tilh               | ører Porcilis-like c                  | lusteret.                                       |                           |
| I tabellen er an                               | givet prøven                 | s lighed i % til udv                  | valgte PRRSV-1 vaccinestammer i OR              | F5:                       |
|                                                | Unistrain                    | Porcilis PRRS                         | Suvaxyn PRRS<br>96V198                          |                           |
| Vaccine:<br>Stamme:<br>Genbank #:<br>Prøve 2 : | Amervac<br>GU067771<br>92,57 | DV<br>MT311646<br>96,37               | LQ787782<br>87,79                               |                           |

#### **Resultat kommentar**

2023-06412

Den sekventerede prøve er 95,52% identisk i ORF5 til Ingelvac MLV vaccinestammen (EF484033).




PRRSV-1 ORF5 fylogenetisk træ

# PRRSV Sekvens Hjemmeside





Udefineret cluster



# Thank you for your attention

- Thanks to the PRRSV research groups
  - KU
    - Lise Kvisgaard, Pia Ryt-Hansen, Nicole Goecke, Kasper Pedersen
  - SEGES Innovation
    - Hanne Bak, Flemming Thorup; Elisabeth Okholm, Metter Fertner
  - LFG
    - Nicolai Weber, Kristian Møller
    - VLK Anne Grete Hassing, Aid Droce and the rest of the lab folkes
  - SSI
    - Charlotte Hjulsager