Universität Bern | Universität Zürich

vetsuisse-fakultät

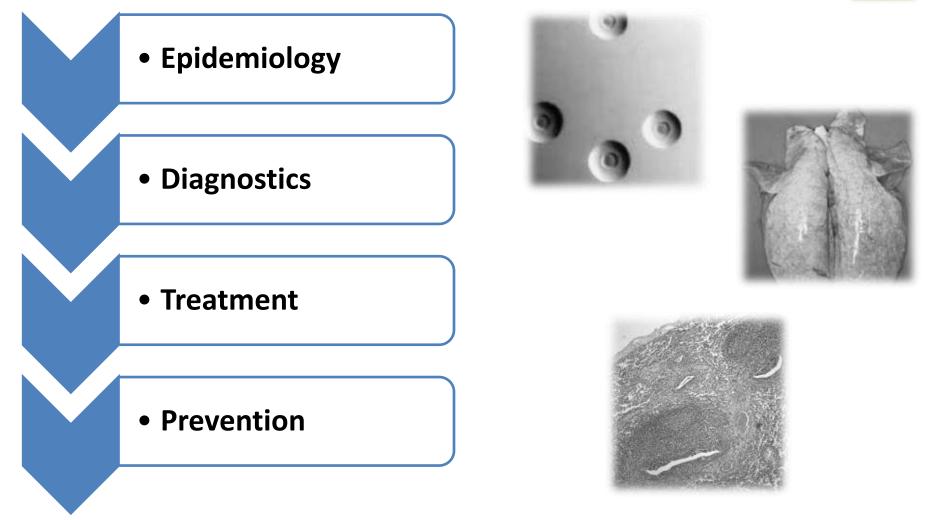
Clinic for Food Animals Department of Clinical Veterinary Medicine

Enzootic Pneumonia in pigs

What is known for long, what is new and what is coming up?

Heiko Nathues

Danish Pig Vet Meeting, Kolding, Denmark, 03. Nov. 2016


This presentation is dedicated to **Peter Høgedal**

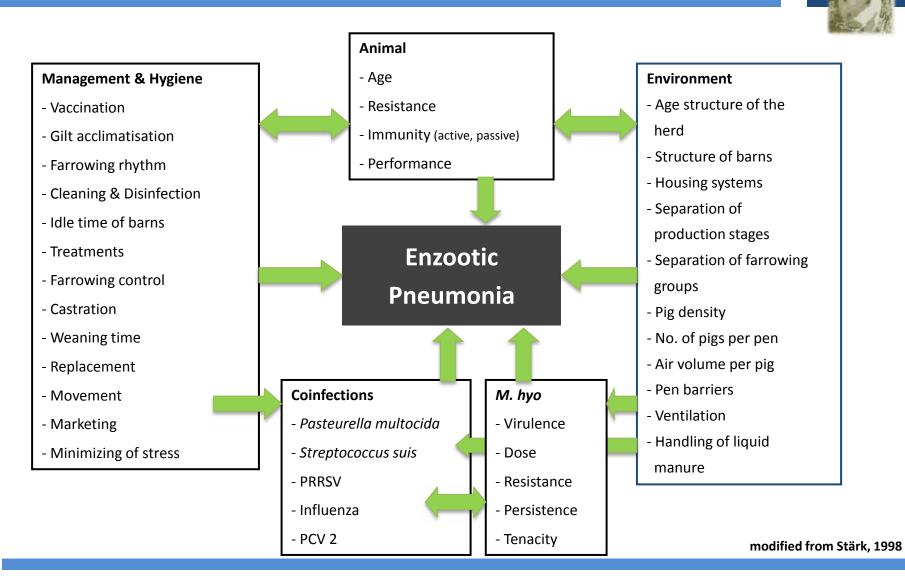
Founding Father and former President of the European Association of Porcine Health Management

Agenda

vetsuisse-fakultät

H. Nathues

Epidemiology of Enzootic Pneumonia in pigs

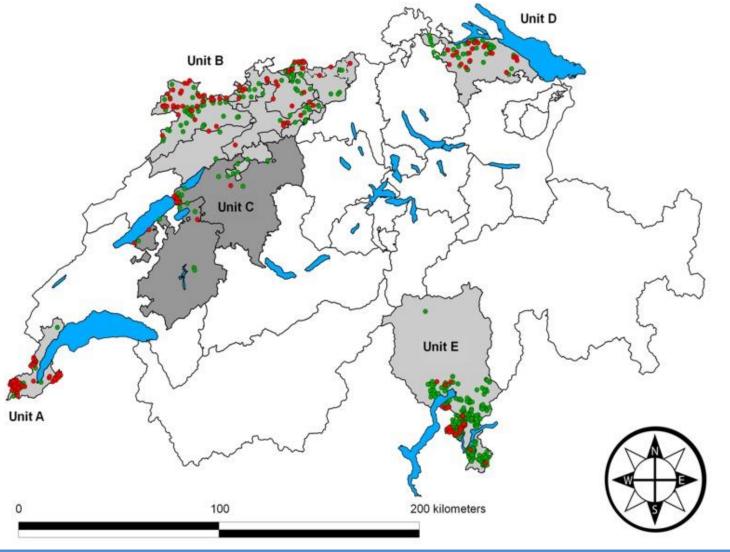

Mycoplasma hyopneumoniae infection

A multi-factorial disease

04.11.2016

M. hyopneumoniae

- Small bacterium without cell wall
- Slow growth *in vitro*
- Slow growth *in vivo*
- Attaches to the cilia on epithelial cells in the airways
- Invades epithelial cells in the airways (?)


interatifit Sera History Sit Zärk

Spread & transmission

vetsuisse-fakultät

Batista-Linhares et al. 2015

Spread & transmission

vetsuisse-fakultät

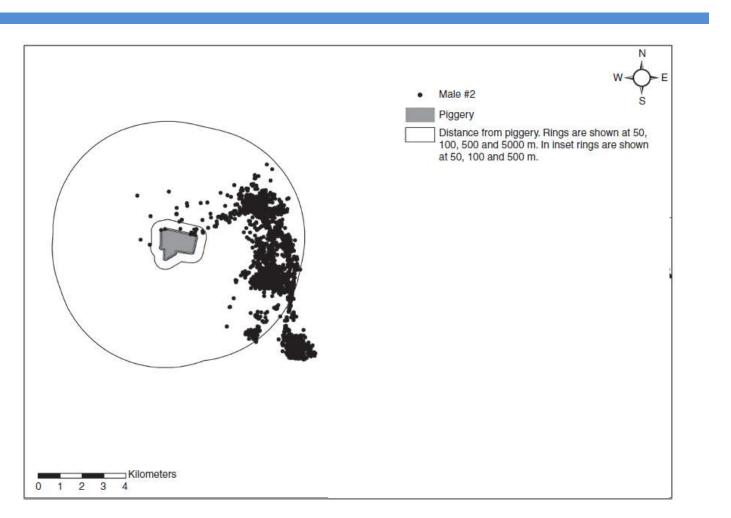


FIG 2: Total movement of a single large male feral pig in the vicinity of a commercial free-range piggery between June 2010 and December 2010 in Southern Queensland, Australia

March 79 2014 | Veterinary Record

H. Nathues

Spread & transmission

M. hyopneumoniae plus X

M. hyopneumoniae interacts with

- Other bacteria such as *A. pleuropneumoniae & P. multocida* (Kobisch et al. 1993, Sörensen et al. 1197)
- Viruses such as PCV2, PRRSV & SIV H1N1 (Opriessnig et al. 2004, Thacker et al. 1999, Thacker et al. 2001)
- Parasites such as *A. suum* (Steenhard et al. 2009)
- Mycotoxines such as Fumonisin B, but not DON (Posa et al. 2013, Michiels et al. 2016)

Effect of Fumonisin B

Table 1. Result of the statistical analysis of density in the regions of interest of pulmonary parenchymal areas of the lungs on the Hounsfield scale (HU means \pm SD).

		A	ge	
Group	Day 30	Day 44	Day 58	Total
C F M MF Total	-648 ± 60^{A} -634 ± 49 -650 ± 57	$\begin{array}{r} -756 \pm 68^{aB} \\ -775 \pm 17^{aB} \\ -637 \pm 83^{b} \\ -606 \pm 115^{b} \\ -691 \pm 106^{B} \end{array}$	-656 ± 36^{b} -679 $\pm 26^{b}$	$\begin{array}{r} -703 \ \pm \ 82^{a} \\ -720 \ \pm \ 80^{a} \\ -643 \ \pm \ 58^{b} \\ -644 \ \pm \ 84^{b} \end{array}$

C, control; F, fed fumonisin; M, infected with *Mycoplasma hyopneumoniae*; MF, infected with *M. hyopneumoniae* and fed fumonisin. Different indices mean significant differences (P < .05) between ^{a,b}groups (within the same column) or ^{A,B}age (within the same row). n = 7/group, except group MF on day 58, where n = 6 (I animal in group MF was euthanized on day 55). Total mean and SD values are of all data in the same row (group) or column (age).

s in a pig infected with Mycowed progressive pulmonary nd ventral consolidation (*).

Economic impact of EP

Heterogeneity of data from the field

- Daily weight gain of pigs infected by direct contact was reduced by 12-16% and feed conversion ratio (feed:gain) increased by 14% (Pointon et al. 1985)
- Daily weight gain of pigs decreased 38g for those being seropositive towards *M. hyopneumoniae* (Rugala et al. 2000)
- Daily weight gain of pigs decreased 37g for every 10% of lung surface affected by lesions (Straw et al. 1989)

Economic impact of EP

Example

vetsuisse-fakultät

- Daily weight gain of pigs decreased 37g for every 10% of lung surface affected by lesions (Straw et al. 1989)
- Example herd:

 55% unaffected lungs: 	decrease of 0.0g
 25% lungs with score 1: 	decrease of 18.5g
 15% lungs with score 2: 	decrease of 74.0g
 5% lungs with score 3: 	decrease of >111g

>>> Average decrease in such a herd: 21.2g per day per pig!!

04.11.2016

Economic impact of EP

Necessity of research

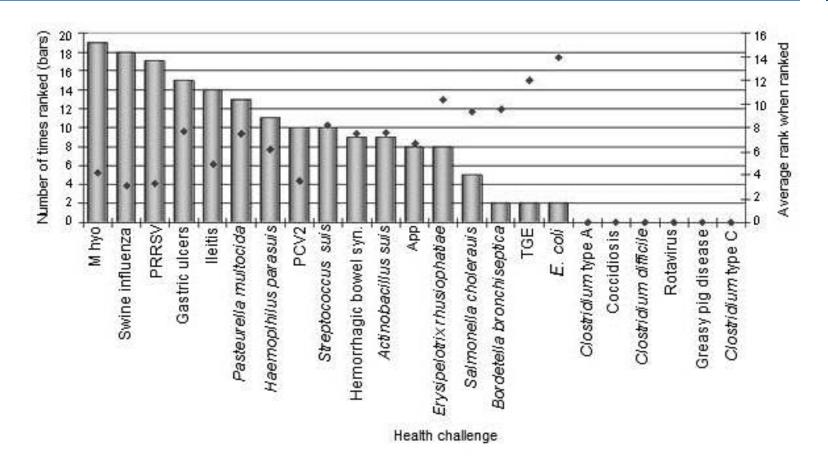


Figure 1. Rank of pathogens in the finishing herd (the most serious challenge was ranked as 1 and the other challenges were ranked in increasing order. The higher the rank, the less significant the challenge).

Economic impact of EP

Necessity of research

vetsuisse-fakultät

Table 1. Summary of estimated economic losses for top four health challenges in all stages of production.

	Losses i (USD	% of a	nimals a	ffected	Average loss for all pigs (USD/pig marketed)					
Health challenge	Breeding	Nursery	Finisher	Breeding	Nursery	Finishing	Breeding	Nursery	Finishing	Total
PRRSV	7.29	2.86	4.34	41.4	42.8	33.8	4.94	1.23	1.47	7.63
M hyo	1.52	1.92	5.84	17.6	10.0	34.3	0.39	0.19	2.00	2.58
Influenza	1.65	1.62	3.37	21.2	26.8	29.9	0.50	0.43	1.00	1.94
PRRS + Mhyo			6.69			18.1			1.21	1.21

Source: https://www.pig333.com/what_the_experts_say/economicimpact-of-mycoplasma-hyopneumoniae-on-pig-farms_8936/

H. Nathues

Diagnosis of Enzootic Pneumonia

Universität Bern | Universität Zärich vetsuisse fakultät

Diagnostic approach

Clinical examination on-farm

•	Increased body temperature	°C
•	High morbidity, but low mortality except for high virulent strains 	%
•	Reduced weight gain	g/day
•	Increased feed conversion ratio	kg/kg
•	Chronic dry and non-productive coughing spontaneously occuring 	C _{ind}

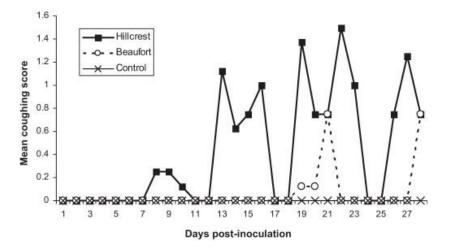
- can be provoked by enforcing the pigs to move

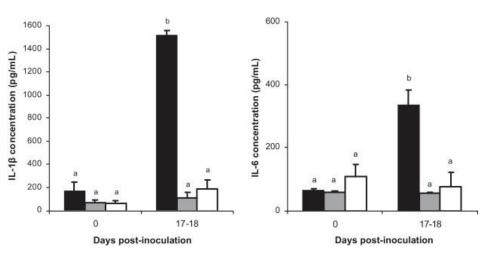
Value of clinical examination on-farm

vetsuisse-fakultät

Table 1

Distribution of herds by prevalence of *M. hyopneumoniae*, detected by PCR and ELISA, and the mean coughing index of each group.


		ELISA (<50% prevalence)	ELISA (≥50% prevalence)
PCR (<50% prevalence)	Number of herds Coughing index (%)	10 1.22 (SD 1.19)	8 2.10 (SD 1.59)
PCR (≥50% prevalence)	Number of herds Coughing index (%)	9 2.86 (SD 1.75)	32 2.95 (SD 1.79)


If PCR positivity was >50%, then the risk for high C_{Ind} was increased by 76% (odds ratio: 1.762; 95% CI: 1.141-2.719)

If ELISA positivity was >50%, then the risk for high C_{Ind} was increased by 50% (odds ratio: 1.501; 95% CI: 1.026-2.195)

Clinical impact of EP

Temporal mean coughing scores among treatment groups (Hillcrest, Beaufort, Control) from 1 to 28 days postinoculation, based on twice-daily recording of individuals on a scale of 0 (normal), 1 (mild abnormal) or 2 (severe abnormal). Cytokine responses for IL-1 β (left) and IL-6 (right) in tracheobronchial lavage fluid of Hillcrest- (black bars), and Beaufort- (grey bars) challenged pigs before and 17–18 days after challenge, compared with controls given sterile medium (white bars) (mean ± S.E.M.). Within each graph, different letters above the columns indicate group means are significantly different as determined by ANOVA (P < 0.001).

Detection of *M. hyopneumoniae* by PCR

Chief Single Sandlake (ACSS) deleteral. 5% 1000 (in the 11111 1.200000000000 88 観辺の

vetsuisse-fakultät

Schwendtilt Bern | Universität Zärich

 M. hyopneumoniae shows high genotypic varaince among isolates from different countries, regions and farms

Mayor et al. 2007

H. Nathues

M. hyopneumoniae				Re	esul	t for	r ind	licat	ed 1	PCR	ass	saya			
isolate	A	В	С	D	E	F	G	Н	I	J	K	L	М	N	0
J ATCC 25934, type strain	+	+	+	-	-	+	+	t	+	+	+	+	+	+	+
232-2A3 (pig passage of strain 11)	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
37-9	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
96MP0001		-		_	1	+	+	+	+	+	+	+		+	+
96MP0002	+	+	+	-	-	+	+	+	+	+	+	+	+	+	+
05MP0601	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
06MP0001D	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
3-14	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
00MP1301	+	+	+	+	+	+	+	+	+	+	+	+	4	+	+
05MP2301	+	+	+	-	1	+	+	+	+	+	+	+	+	+	+
95MP1501	-	-	-	+	+	+	+	+	+	+	+	+	+	+	+
95MP1502	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
97MP0001	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
95MP1503	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+
95MP1511	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
95MP1504	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
95MP1505	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
95MP1506	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
95MP1507	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+
95MP1509	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
95MP1510	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
00MP0001	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
00MP0002	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
00MP0003	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
05MP2302A	+	+	+	-	2	+	+	+	+	+	+	+	+	+	+
05MP2303	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
06MP0002	+	+	+	+	+	+	+	+	+	+	+	+		+	+
06MP2501	+	+	+	-	_	+	+	+	+	+	+	+	+	+	+
00MP1502	+	+	+	+	+	+	+	+	+	+	+	+	<u> </u>	+	+
P-1814-10		-	_	+	+	+	+	+	+	+	+	+	-	+	+
P-5398-1	+	+	+	_	-	+	+	+	+	+	+	+		+	+
P-5782	20	-2	_	+	+	+	+	+	+	+	+	+	+	+	+
P-6053-2	+	+	+	-	-	+	+	+	+	+	+	+	_	+	+
P-11318-6	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+
P-12895-2	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+
P-13129-6	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

TABLE 2. Summary of results for PCR assays tested against a panel of *M. hyopneumoniae* isolates

04.11.2016

Indirect detection of *M. hyopneumoniae*

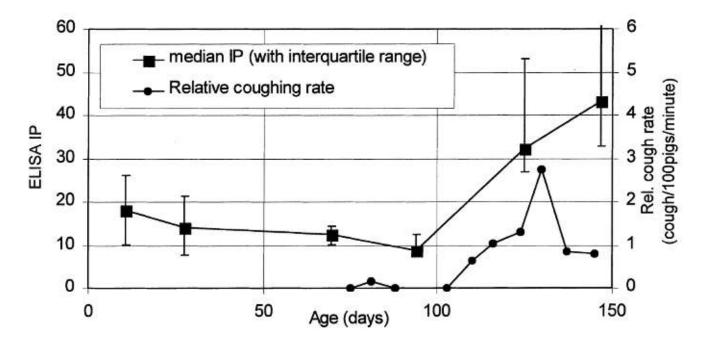
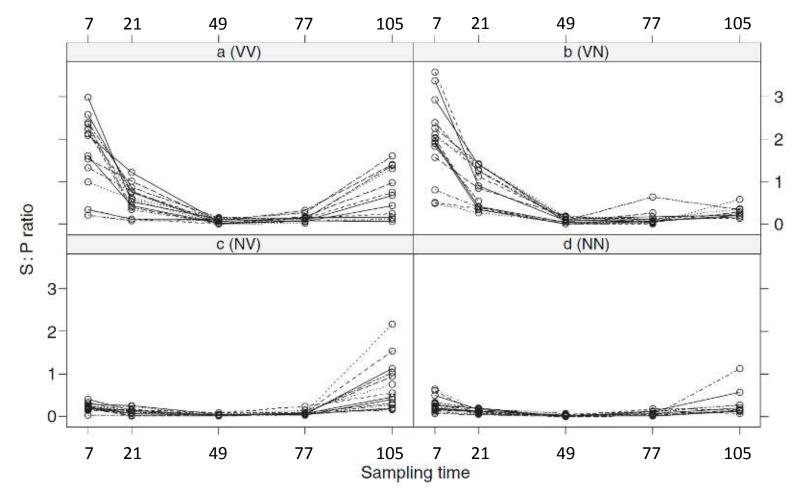



Fig. 1. Median (interquartile range) ELISA IP's for antibodies against *M. hyopneumoniae* and coughing rates of the group of pigs on farm A.

Indirect detection of *M. hyopneumoniae*



Martelli et al. 2006

Interpretation of laboratory reports

H. Nathues

Treatment of Enzootic Pneumonia

Basic concepts of treatment

vetsuisse-fakultät

Individual treatment

Mode of action of different antimicrobials

Mycoplasma sp. Antimicrobials have no cell wall Cell membrane Fluoroquinolones DNA β-lactam aptibiotics - Penicillins - Cephalosporins Glycopeptides Folic acid Ribosome Sulphonamides Lincosamides Macrolides Tetracyclines Florfenicol Trimethoprim Pleuromutilins Aminosides 24 Maes et al. 2013

04.11.2016

H. Nathues

interactifit Sera Highwork(); Zärich

Table 1. Frequency distribution of minimal inhibitory concentrations (MICs) of 12 antimicrobials for 159 Thai isolates of *M. hyopneumoniae* isolated during 2006-2011

Deve						Number	of stra	ins wi	th MI	C (μg/1	ml) of						MIC	C (μg/ml)
Drug	400	200	100	50	25	12.5	6.25	3.12	1.56	0.78	0.39	0.2	0.1	0.05	0.025	0.013	Strain J	Break point ^{c)}
Tiamulin										1		4	54	60	22	18(≤)	0.05	≥16
Lincomycin						<u>2</u> (>)				10	32	80	32	2	1(≤)		0.05	NA
Tylosin						<u>2</u> (>)			1	10	15	37	60	21	13(≤)		0.05	≥4
Spiramycin					2	1	1		4	25	61	51	14				0.39	NA
Josamycin						<u>2</u> (>),1		3	5	39	53	35	21				0.2	NA
Kitasamycin						<u>1(>),1</u>	2	3	35	77	33	6	1				0.39	NA
Erythromycin	<u>2</u> (>) ^{a)} ,11	23	14	40	55	10	4										25	≥4
Florfenicol							1	2	100	<u>50</u>	3	3					0.39	≥8 ^{d)}
Doxycycline							24	<u>79</u>	<u>46</u>	9	1						0.39	NA
Oxytetracycline						8	<u>82</u>	<u>52</u>	13	4							0.78	≥16
Chlortetracycline			8	<u>44</u> b)	60	<u>39</u>	4	4									3.12	NA
Enrofloxacin					1	<u>1</u>	24	<u>50</u>	17	18	27	4	17				0.2	≥2

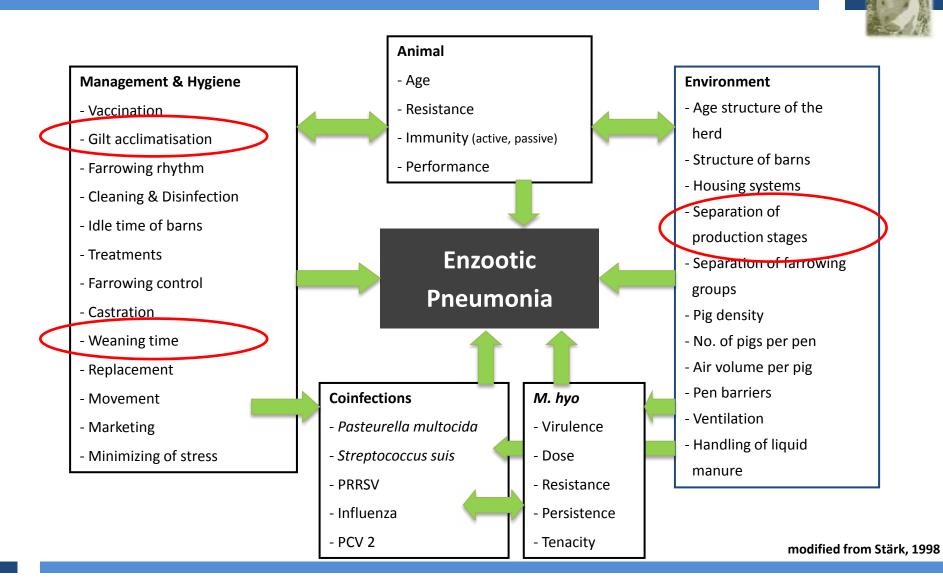
a) >: equal or higher than MIC indicated. \leq : equal or lower than MIC indicated. b) The underline indicates that the group includes macrolides and lincomycin resistant strain. c) Data from Hannan (2000) [5]. d) Data from CLSI (2010) [2]. NA: Not available.

Prevention of Enzootic Pneumonia

A strategic approach is needed

• Elimination of risk factors

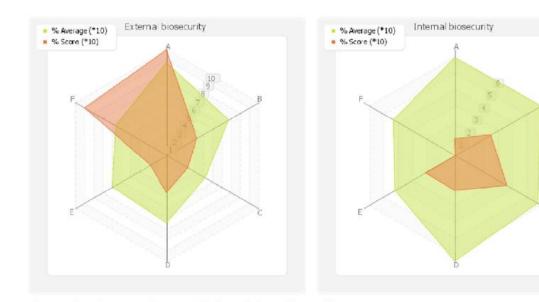
- Purchase policy
- Stocking density
- Biosecurity measures
- Herd size
- Pig density in the region
- Seasonal influence
- Vaccination
- Eradication


Difficult to change

Easy to implement

32

A multi-factorial disease



Assessment of biosecurity

vetsuisse-fakultät

Figure. Visual report after completion of the online tool

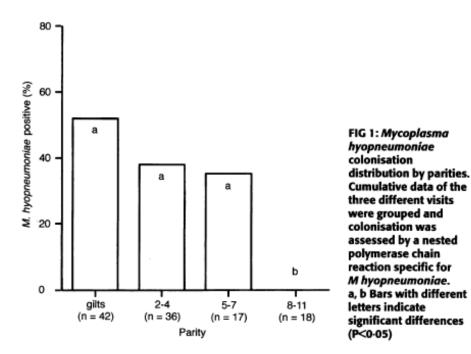
- 1. External biosecurity
- A. Purchasing policy
- B. Removal of animals, manure and carcasses
- C. Supply of fodder, water and equipment
- D. Access check
- E. Vermin and bird control lines
- F. Location and environment

- 2. Internal biosecurity
 - A. Management of diseases
 - B. Farrowing and suckling period
 - C. Nursery unit
 - D. Fattening period
 - E. Compartmentalizing, working lines
 - F. Cleaning and disinfection

Impact of different risk factors

- Acclimatisation of gilts (Acc)
 - In a recent study it was shown that suckling pigs are 10 times more likely being infected with *M. hyopneumoniae*, when gilts in the particular herd do not have contact to living animals during their acclimatisation period
- Length of suckling period (Suc)
 - The likelihood of transmission of *M. hyopneumoniae* from sows to their offspring exponentially increases with the length of the suckling period, which is equal to the time under exposure
- Vaccination of suckling pigs against *M. hyopneumoniae* (Vac)
 - When suckling pigs get vaccinated against *M. hyopneumoniae*, the basic reproductive rate of the infection is lowered by approximately 20%
- Contact between growing and fattening pigs of different age during restocking of compartments (Con)
 - The contact between pigs of different age during restocking of fattening compartments has been shown effectively increasing the spread of the infection in this age group (OR: 13.8)
- Co-infections in growing and fattening pigs (Inf)
 - Knowledge about the impact is rare. An expert opinion was utilized in order to include this risk factor in the model basically working on the β of growing and fattening pigs

Estimates from a SEIR model regarding EP


Scenario		R	isk facto	or		Suckling period	Nursery period	Growing period	Finishing period	Whole life time
No.	Vac	Acc	Suc	Con	Inf	Median	Median	Median	Median	Median
1			+	+	+		0.10		0.13	
2	+		+	+	+		0.10		0.11	
3	+	+	+	+	+					
4	+	+		+	+				0.07	0.04
5	+	+	+		+					
6	+	+	+	+					0.11	0.05
7	+	+			+					0.12
8	+	+	+							
9	+	+		+						0.14
10	+			+	+			0.04	0.12	0.11
11	+				+			0.04	0.13	0.11
12	+			+						0.18
13	+	-	-	-	-	0.03	0.23	0.08	0.25	0.20
14	+	-	+	-	+	0.01	0.10	0.02	0.15	0.12
15	+		+				0.11	0.04		
16	+		+	+			0.11	0.04		0.17
17	+	+	-	-	-	0.00	0.03	0.02	0.34	0.25
18	-	+	-	-		0.00	0.03	0.02	0.34	0.26

Role of gilts I

vetsuisse-fakultät

• **Gilts** have been identified being the most critical factor for the infection of <u>suckling pigs</u> with *M. hyopneumonniae*

Role of gilts II

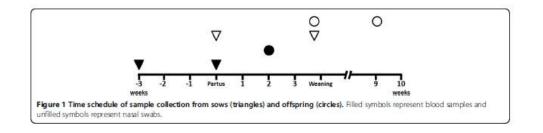
vetsuisse-fakultät

• **Gilts** have been identified being the most critical factor for the infection of <u>suckling pigs</u> with *M. hyopneumonniae*

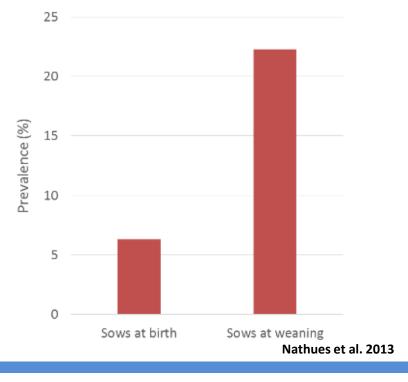
Risk Factors for Enzootic Pneumonia Among Fattening Pigs

H. Nathues et al.

Control I (base outcome)	RRR	SE	Ζ	P > z	95% CI
Control II					
Increase of the age of piglets at weaning	1.37	0.185	2.32	0.020	1.05-1.78
Increase of the age of the nursery unit	0.74	0.093	-2.42	0.016	0.57-0.94
Exposing gilts to living animals	0.05	0.056	-2.68	0.007	0.01-0.45
Increase in weaned piglets per sow and year	0.52	0.129	-2.64	0.008	0.32-0.85
Contact between fattening pigs of different age during restocking of compartments	6.00	6.068	1.77	0.076	0.83-43.5
Case					
Increase of the age of piglets at weaning	1.36	0.190	2.19	0.029	1.03-1.79
Increase of the age of the nursery unit	0.91	0.105	-0.78	0.437	0.73-1.15
Exposing gilts to living animals	0.03	0.033	-3.03	0.002	0.00-0.28
Increase in weaned piglets per sow and year	0.57	0.142	-2.25	0.025	0.35-0.93
Contact between fattening pigs of different age during restocking of compartments	13.8	14.62	2.48	0.013	1.7-109.9


Table 4. Risk factors identified in the final multinomial logistic regression model

RRR, relative risk ratio, values with P < 0.05 marked in bold.


Number of herds in the model = 63; Log likelihood = -46.4; Pseudo $R^2 = 0.33$.

Sow to piglet transmission

• The **length of the suckling period** is the most important issue in regard to *M. hyopneumoniae* infection in <u>nursery pigs</u>

M. hyopneumoniae in sows

H. Nathues

vetsuisse-fakultät

 Considering the <u>overall</u> impact of the disease, the all-in-all-out principle is most important in terms of preventing the transmission of *M. hyopneumoniae* in closed pig herds

Control I (base outcome)	RRR	SE	z	P > z	95% CI
Control II					
Increase of the age of piglets at weaning	1.37	0.185	2.32	0.020	1.05-1.78
Increase of the age of the nursery unit	0.74	0.093	-2.42	0.016	0.57-0.94
Exposing gilts to living animals	0.05	0.056	-2.68	0.007	0.01-0.45
Increase in weaned piglets per sow and year	0.52	0.129	-2.64	0.008	0.32-0.85
Contact between fattening pigs of different age during restocking of compartments	6.00	6.068	1.77	0.076	0.83-43.5
Case					
Increase of the age of piglets at weaning	1.36	0.190	2.19	0.029	1.03-1.79
Increase of the age of the nursery unit	0.91	0.105	-0.78	0.437	0.73-1.15
Exposing gilts to living animals	0.03	0.033	-3.03	0.002	0.00-0.28
Increase in weaned piglets per sow and year	0.57	0.142	-2.25	0.025	0.35-0.93
Contact between fattening pigs of different age during restocking of compartments	13.8	14.62	2.48	0.013	1.7-109.9

Table 4. Risk factors identified in the final multinomial logistic regression model

RRR, relative risk ratio, values with P < 0.05 marked in bold.

Number of herds in the model = 63; Log likelihood = -46.4; Pseudo $R^2 = 0.33$.

Prevention of «instability»

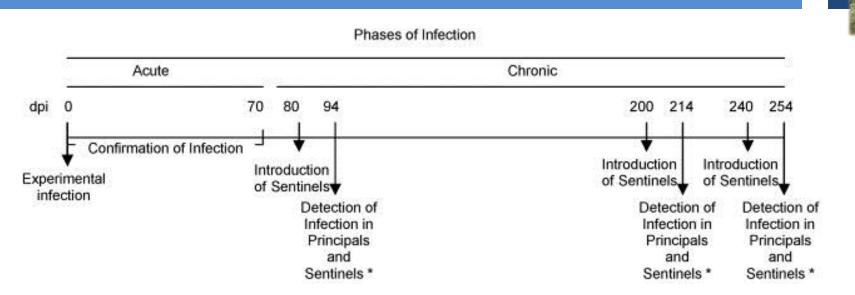
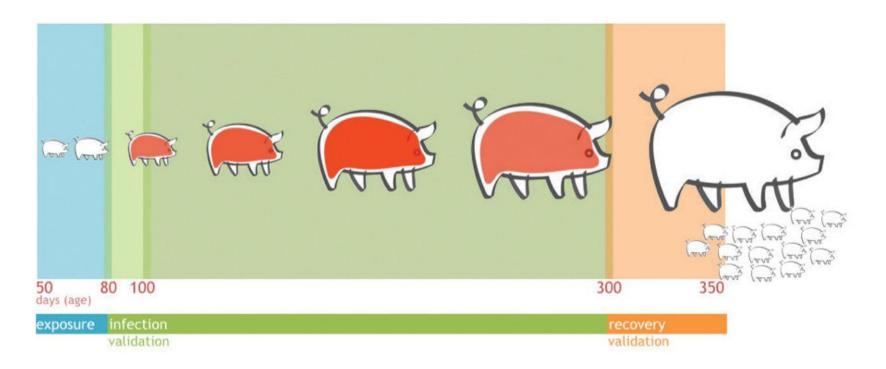


Fig. 1. Experimental design for the assessment of the duration of M. hyopneumoniae infection in an experimentally infected population of pigs. *Principals (n = 18) and sentinels (n = 15) at each time point were humanely sacrificed, M. hyopneumoniae DNA and ant...



Pieters et al. 2009

«50-350 management of gilts»

vetsuisse-fakultät

Proposed timeline for gilt acclimation in a reproductive herd where recipient sows are positive to M hyopneumoniae and newly introduced gilts are free of the pathogen and disease, or obtained from a low prevalence multiplier.

Pieters et al. 2016

• Reduction of *M. hyopneumoniae* in the lung tissue after vaccination, but no elimination of the pathogen

Table 1 Scoring of the presence of macrophages, T- lymphocytes and B-lymphocytes in bronchus-associated lymphoid tissue (BALT) and the number of *M. hyopneumoniae* organisms (log) in the bronchoalveolar lavage (BAL) fluid¹

	Score T-ly (0-3)	mphocytes	Score B-ly (0-3)	mphocytes	Score macr (0-3)	ophages ²	Log of number of <i>M. hyopneumoniae</i> organisms in BAI fluid (log qPCR) ²			
Weeks PI	4	8	4	8	4	8	4	8		
control	1.0 ± 0.0	0.0 ± 0.0	0.5 ± 0.5	0.5 ± 0.5	$0.0 \pm 0.0^{a, b}$	0.3 ± 0.2	-0.76 ± 0.21 ^a	-0.69 ± 0.41^{a}		
nvLV	1.2 ± 0.2	0.5 ± 0.5	2.0 ± 0.5	0.8 ± 0.7	0.7 ± 0.5 ^{a, b}	1.3 ± 0.8	1.25 ± 0.74 ^{a, b}	2.41 ± 0.59^{b}		
nvHV	1.4 ± 0.2	1.2 ± 0.3	2.8 ± 0.2	1.6 ± 0.3	1.6 ± 0.9 ^b	1.0 ± 0.4	3.44 ± 0.35^{b}	$1.89 \pm 0.71^{a, b}$		
vLV	0.8 ± 0.4	0.5 ± 0.2	1.4 ± 0.6	0.9 ± 0.2	0.0 ± 0.0^{a}	0.1 ± 0.1	$0.97 \pm 0.53^{a, c}$	2.29 ± 0.39^{b}		
vHV	1.0 ± 0.3	1.0 ± 0.2	1.6 ± 0.4	1.5 ± 0.2	0.0 ± 0.0^{a}	0.2 ± 0.1	1.96 ± 0.43 ^{b, c}	1.80 ± 0.48^{b}		

nv non-vaccinated; v vaccinated; LV low virulent challenge strain; HV highly virulent challenge strain

¹ Scoring was performed on samples of vaccinated and non-vaccinated pigs at 4 and 8 weeks after endotracheal inoculation with a low or highly virulent *M. hyopneumoniae* strain. A non-vaccinated and non- infected control group was also included.

² Different lowercase letters correspond to significantly different values between the groups within a column

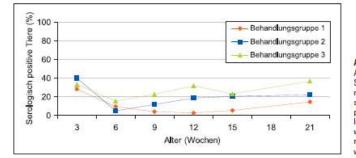
Interference with maternal immunity I

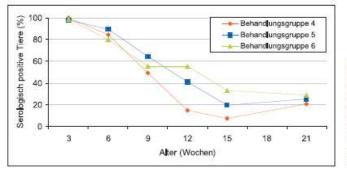
vetsuisse-fakultät

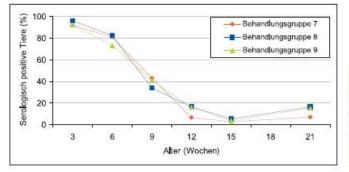
J. Vet. Med. B 53, 229–233 (2006) © 2006 The Authors Journal compilation © 2006 Blackwell Verlag, Berlin ISSN 0931–1793

Department of Animal Health, Faculty of Veterinary Medicine, University of Parma, Parma, Italy

Antibody Response to *Mycoplasma hyopneumoniae* Infection in Vaccinated Pigs with or without Maternal Antibodies induced by Sow Vaccination


P. MARTELLI^{1,4}, M. TERRENI², S. GUAZZETTI³ and S. CAVIRANI¹


This pattern of immune responsiveness (i.e. the collective results of Groups A, B, C and D) suggested that vaccination of pigs had primed their immune system for subsequent exposure to *M. hyopneumoniae*, and that passively acquired antibody had little or no effect on either a vaccine-induced priming or a subsequent anamnestic response. According to the statistical analysis **sow serological status did not interfere with the antibody response in early vaccinated piglets**. In conclusion, the results pointed out that early vaccination of piglets may assist *M. hyopneumoniae* control independently from the serological status of sows.


Interference with maternal immunity II

vetsuisse-fakultät

Abb. 1

Anteil serologisch positiver Schweine (%) bei Nachkommen ungeimpfter Sauen, die selbst nicht (Behandlungsgruppe e) 1 resp. in der 3. (Behandlungsgruppe 3) oder 6. Lebenswoche (Behandlungsgruppe 2) mit Ingelvac® M. hyo geimpft wurden

Tab. 3

Abb. 2

Anteil serologisch positiver Schweine (%) bei Nachkommen der mit Ingelvac[®] M. hyo geimpften Sauen, die selbst nicht (Behandlungsgruppe 4) resp. in der 3. (Behandlungsgruppe 6) oder 6. Lebenswoche (Behandlungsgruppe 5) mit Ingelvac[®] M. hyo geimpft wurden

> Tab. 4 Lungenbefunde zum Zeitpunkt der Schlachtung

Zuwachs (kg/Tag) im Zeitra

von der 3. bis 21. Lebenswo

Abb. 3

Anteil serologisch positiver Schweine (%) bei Nachkommen der mit Impfstoff A geimpften Sauen, die selbst nicht (Behandlungsgruppe 7) resp. in der 1. (Behandlungsgruppe 8) oder 3. Lebenswoche (Behandlungsgruppe 9) mit Impfstoff A geimpft wurden

Effektivität von Impfungen gegen *Mycoplasma hyopneumoniae* bei Schweinen von geimpften resp. nicht geimpften Sauen

S. Lehner, D. Meemken, H. Nathues, E. grosse Beilage

Außenstelle für Epidemiologie (Leiter: Prof. Dr. T. Blaha) der Stiftung Tierärztliche Hochschule Hannover

Tierärztl Prax 2008; 36 (G): 399-406

um che	Behandlungs- gruppe	Tiere (n)	Zuwachs* (kg/Tag)	SD	Minimum	Maximum	Differenz zu BG 5 (p-Wert)
	1	99	0,575	0,101	0,302	0,807	0,0588
	2	98	0,589	0,095	0,270	0,800	0,3718
	3	94	0,593	0,093	0,342	0,772	0,5606
	4	86	0,596	0,083	0,341	0,796	0,7013
	5	92	0,601	0,093	0,294	0,797	-
	6	89	0,589	0,086	0,306	0,764	0,3561
	7	97	0,561	0,096	0,306	0,775	0,0037
	8	97	0,571	0,092	0,333	0,834	0,0265
	9	97	0,567	0,090	0,306	0,755	0,0113
	* arithmetischer Mitte	wert BG - Beh	andungsgruppe; SD -	Standardabw	eichung		

Differenz Behandlungs-Score* SD Minimum Maximum Lungen (Mittelwert) zu BG 3 gruppe (m) (p-Wert) 1 68 6,68 5,62 0 21 0.0020 2 5,20 4,57 76 0 22 0,0248 61 18 3 3,79 3,92 0 59 5,92 21 0.0012 4 6.920 5 65 4,88 4.61 0 20 0.1789 57 6 0 21 5.30 4.86 0.0368 7 76 7,32 4,95 0 23 < 0.0001 8 71 6.08 4,20 0 16 0.0003 9 74 5,14 < 0.0001 7,05 0 20 ³ Lungenscore nach Mades und Kobisch (1902); BG – Behandlungsgruppe; SD – Standardsbweichung; signifikante Differenzen

* Langenoore nach Mades and Kabissh (1962); BG – Behandlangsgruppe; SD – Standardsbweichung, signifikante Differenzen (p. < 0,01)</p>

Take home message for today

Based on recent studies ...

... we can say that

- Gilts can become the most critical factor for the infection dynamics
- Considering the <u>overall</u> impact of the disease, the all-in-all-out principle is most important in terms of preventing the transmission of *M. hyopneumoniae* in closed pig herds
- Vaccination is an excellent tool in prevention programs for EP, but cannot work alone without implementation of <u>additional</u> <u>measures</u>

University of Berne Vetsuisse-Faculty Departement for Clinical Veterinary Medicine Clinic for Food Animals

Prof. Dr. med. vet. Heiko Nathues, Ph.D. Dipl. ECPHM, FTA Schweine, CertVetEd, FHEA Head of the Swine Clinic

Bremgartenstrasse 109 a CH-3012 Bern Tel. +41 (0)31 631 23 41 Fax +41 (0)31 631 26 31 mailto:heiko.nathues@vetsuisse.unibe.ch http://www.schweineklinik.ch

Accredited by

Approved training centre

