

Infectious and Non-infectious causes of poor reproductive performance in Sows

Johannes Kauffold, Dr. med. vet. habil. Dipl. ECPHM

Large Animal Clinic for Theriogenology and Ambulatory Services, Faculty of Veterinary Medicine, University of Leipzig

Road Map

- Little Introduction
- Genital Diseases
- Diagnostic Procedure
- "A" Case
- Take Home Message

"More than 70 % of a veterinarian's duties on a sow farm is related to reproduction (and thus the reproductive tract)."

Culling Reasons for Sows

	Infertility	Low Performance	Lameness	Death	Disease	Miscellaneous	Age
USA ¹	33.6	20.6	- 13.2	7.4	3.1	13.3	8.7
Finland ²	30.9	20.0 15.4	13.2	4.2	4.6	18.8	13.2

¹ Lucia T et al. Proc 14th IPVS Congress 1996; 540 ² Heinonen M et al. Anim Reprod Sci 1998; 52: 235-244

Individual Level: Genital Diseases as revealed by Gross-Morphology of Cull Sows

Genital Condition	Reference		
	(A) (n = 1.404)	(B) (n = 1.708)	(C) (n = 499)
	n (%)	n (%)	n (%)
Intact	512 (36.5)	894 (53.3)	na
Diseased	892 (63.5)	814 (47.7)	na
Cervicitis	na	na	12 (2.4)
Ovarian	na	428 (52,6)	29 (5.8)
Inactivity/Atrophia			
Ovarian Cysts (single, multiple)	64 (7.2)	106 (13,0)	50 (10.0)
Ovarian Tumors	4 (0.4)	13 (1.6)	kA
Ovarian Adhesions	493 (55.3)	19 (2.3)	kA
Paraovarian Cysts	93 (10.4)	392 (48.2)	16 (3.2)
Congenital	8 (0.9)	14 (1.7)	8 (1.6)
Abnormalities	、	ΥΥΥ Υ	x y
Uterine Diseases	192 (21.5)	22 (2.7)	41 (8.2)
Tubal Diseases	kA	3 (0.4)	9 (1.8)

^A Percentages given relative to diseased sows only; ^B Percentages give relative to all sows (i.e. intact and diseased)

(Kauffold J. Tierärztliche Praxis 2008;36(G):189-198)

Sow Herd Level: Common Problems (related to production parameters)

Low Conception/Farrowing Rate Late Fallout Low Litter Size **Delayed/No Puberty Attainment Vulval Discharge** Long Wean-Estrus-Interval **Regular/Irregular Return to Estrus Embryonic Mortality/Abortion MMA**

Reproductive disorders

Congenital Acquired

Infectious Non-Infectious Miscellaneous

Bacterial Viral Yeast/Fungi Degenerative Tumorous

Toxins Malnutrition/Minerals/ Trace Elements

Cervix/Vagina – Infectious

Genital diseases as revealed by gross-morphology of cull sows

Genital Condition	Reference		
	$(28) (n = 1.404)^{A}$	(34) (n = 1.70	$(11) (n = 499)^{B}$
	n (%)	n (%)	n (%)
Intact	512 (36.5)	894 (53.3)	na
Diseased	892 (63.5)	814 (47.7)	na
Cervicitis	na	na	12 (2.4)
Ovarian	na	428 (52,6)	29 (5.8)
Inactivity/Atrophia			
Ovarian Cysts (single,	64 (7.2)	106 (13,0)	50 (10.0)
multiple)			
Ovarian Tumors	4 (0.4)	13 (1.6)	kA
Ovarian Adhesions	493 (55.3)	19 (2.3)	kA
Paraovarian Cysts	93 (10.4)	392 (48.2)	16 (3.2)
Congenital	8 (0.9)	14 (1.7)	8 (1.6)
Abnormalities			
Uterine Diseases	192 (21.5)	22 (2.7)	
Tubal Diseases	kA `´´	· · ·	19/824 (2.3%) with

^A Percentages given relative to diseased sows only; ^B relative to all sows (i.e. intact and diseased)

(Kauffold J. Tierärztliche Praxis 2008;36(G):189-198)

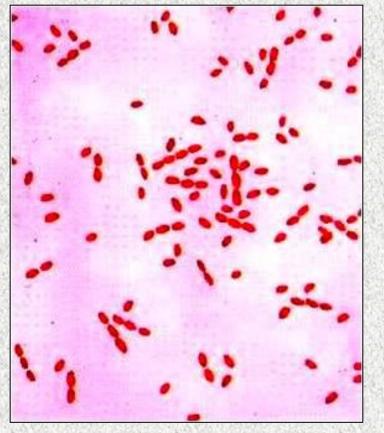
19/824 (2.3%) with discharge due to inflammation of the cervix/ vagina (*Oravainen et al. Reprod Dom Anim 2006;41:549–554*)

Ovary – Congenital

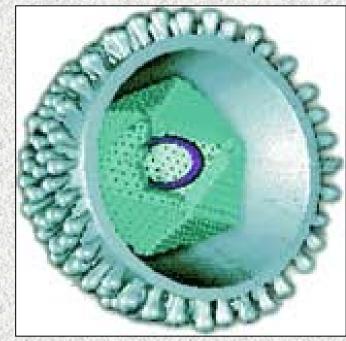
Gilt (cyclic, but never pregnant)

Ovotestis

Ovary – Infectious

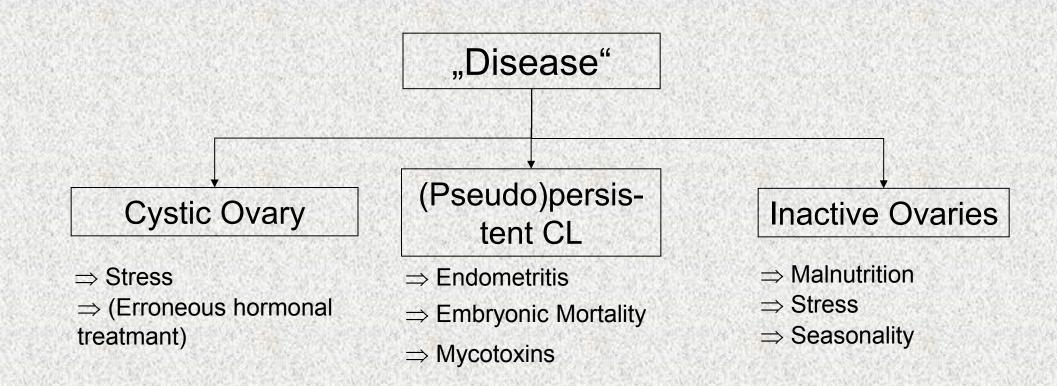

Genital diseases as revealed by gross-morphology of cull sows

Reference					
$(28) (n = 1.404)^{A}$	$(34) (n = 1.708)^{A}$	_(11) (n = 499) ^B			
n (%)	n (%)	n (%)			
512 (36.5)	894 (53.3)	na			
892 (63.5)	814 (47.7)	na			
na	na	12 (2.4)			
na	428 (52,6)	29 (5.8)			
64 (7.2)	106 (13,0)	50 (10.0)			
4 (0 4)	13 (1 6)	kA			
493 (55.3)	19 (2.3)	kA			
93 (10.4)	392 (48.2)	16 (3.2)			
8 (0.9)	14 (1.7)	8 (1.6)			
192 (21.5)	22 (2.7)	41 (8.2)			
kA	3 (0.4)	9 (1.8)			
tive to diseased so	ws only; ^B Percenta	ages given			
	n (%) 512 (36.5) 892 (63.5) na na 64 (7.2) 4 (0 4) 493 (55.3) 93 (10.4) 8 (0.9) 192 (21.5) kA tive to diseased so	$\begin{array}{c cccc} n (\%) & n (\%) \\ \hline 512 (36.5) & 894 (53.3) \\ 892 (63.5) & 814 (47.7) \\ na & na \\ na & 428 (52,6) \\ \hline 64 (7.2) & 106 (13,0) \\ \hline 4 (0.4) & 13 (1.6) \\ 493 (55.3) & 19 (2.3) \\ 93 (10.4) & 392 (48.2) \\ 8 (0.9) & 14 (1.7) \\ \hline 192 (21.5) & 22 (2.7) \\ \end{array}$			


(Kauffold J. Tierärztliche Praxis 2008;36(G):189-198)

Ovary – Infectious

Brucella

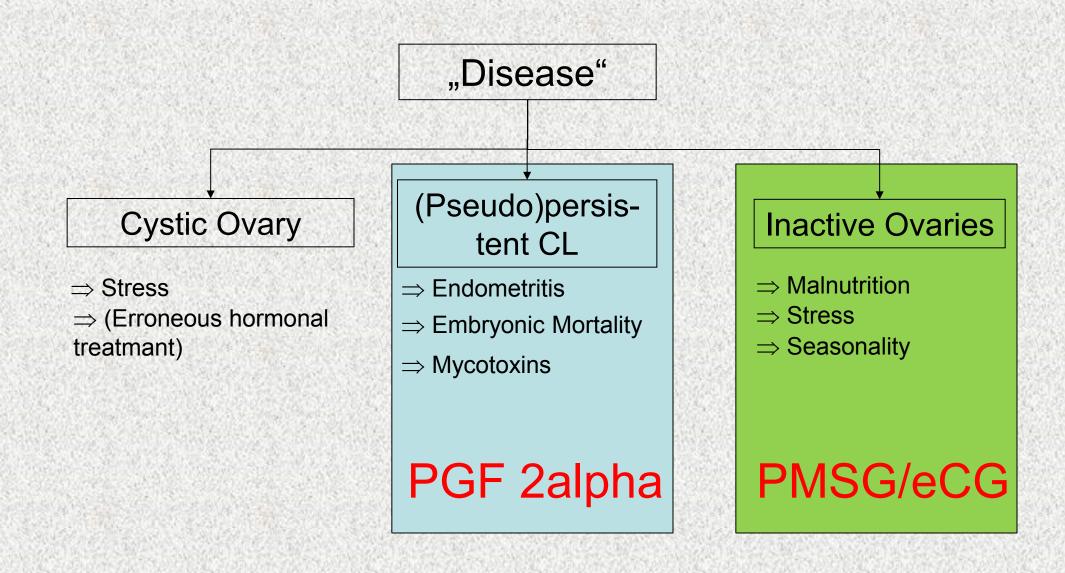


Pseudorabies

같이 가장 그는 데구지에서 전에 가지 아주 집에는 데구지에서 것이 한다. 아주 가

Ovary – Non-Infectious

Own Results


Ultrasonographic findings of the ovaries in non-pregnant first served sows examined between days 20 and 114 postinsemination (n = 223)

Ultrasonographic	Days post-insem				
findings	20–25 (<i>n</i> = 95)	26–37 $(n = 83)$	38–46 ($n = 20$)	47–114 ($n = 25$) Total* $(n = 223)$
CL (n/%)	37/38.9 ^a	39/47.0 ^a	11/55.0 ^a	17/68.0 ^a	104/46.6 ^a
F_{2-6} (n/%)	34/35.8 ^{a,b,A}	25/30.1 ^{a,b,A}	3/15.0 ^{b,A,B}	1/4.0 ^{b,B}	63/28.3 ^b
POS (n/%)	21/22.1 ^b	16/19.3 ^b	2/10.0 ^b	4/16.0 ^b	43/19.3 ^c
POD (n/%)	3/3.2 ^{c,C}	3/3.6 ^{c,B,C}	4/20.0 ^{a,b,A}	3/12.0 ^{b,A,B}	13/5.8 ^d
	indings of the ovar $n = 104$)	ies in non-pregnar	nt first served gilts	examined between	1 days 20 and 114
postinsemination (<i>i</i> Ultrasonographic		B. Sili	nt first served gilts	examin <mark>e</mark> d betweer	n days 20 and 114
postinsemination (<i>i</i> Ultrasonographic	n = 104)	B. Sili	at first served gilts $38-46 (n = 10)$	examined between $47-114 (n = 11)$	
postinsemination (/ Ultrasonographic findings	n = 104) Days post-insemi	nation			
postinsemination (<i>i</i> Ultrasonographic findings CL (<i>n</i> /%)	$n = 104)$ $\frac{\text{Days post-insemi}}{20-25 (n = 41)}$	nation $26-37 (n = 42)$	38–46 (<i>n</i> = 10)	47–114 (<i>n</i> = 11)	Total* $(n = 104)$
Ultrasonographic f postinsemination (n Ultrasonographic findings CL ($n/\%$) F ₂₋₆ ($n/\%$) POS ($n/\%$)	$m = 104)$ $\frac{\text{Days post-insemi}}{20-25 \ (n = 41)}$ $21/51.2^{\text{a}}$	nation 26-37 (n = 42) $23/54.8^{a}$	38-46 (n = 10) 5/50.0 ^a	47–114 (<i>n</i> = 11) 8/72.7 ^a	Total* $(n = 104)$ 57/54.8 ^a

CL: corpora lutea; F_{2-6} : follicles of 2–6 mm in diameter; POS: peri-ovulatory ovarian structures (including follicles of 7–8 mm in diameter and corpora haemorrhagica); POD: polycystic ovarian degeneration (multiple cysts without CL). The superscript letters (a–c) indicate that the values are significantly different within a column (P < 0.05). There were no significant differences within a row. Asterisk (*) indicates the values that are not in statistical testing within a row.

(Kauffold J. Tierärztliche Praxis 2008;36(G):189-198)

Ovary – Non-Infectious

Cystic Ovaries

Number

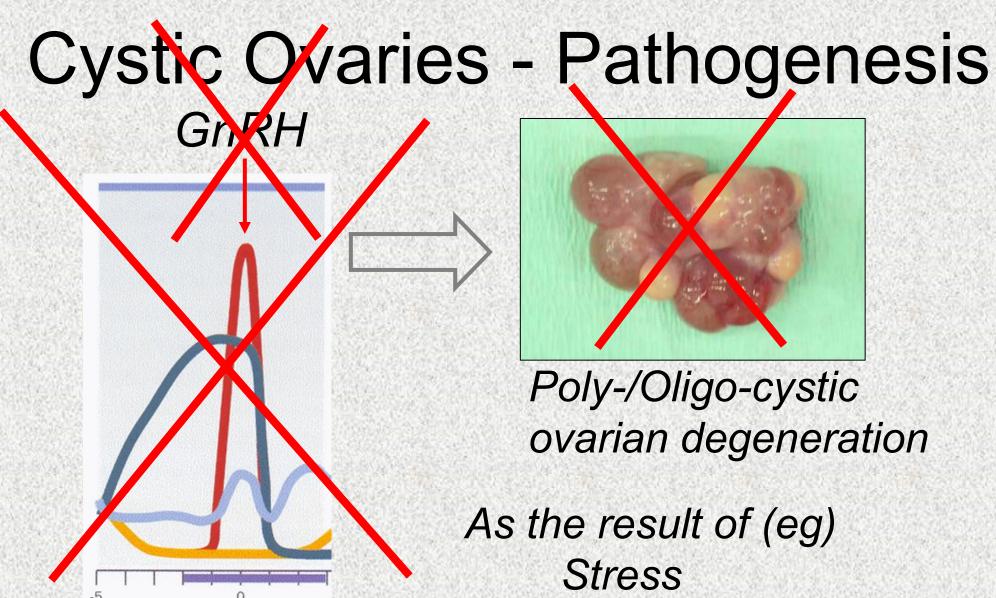
Single cysts - 5 – 20%

Oligo-cystic ovarian degeneration (many, but not only) - 8 - 30%

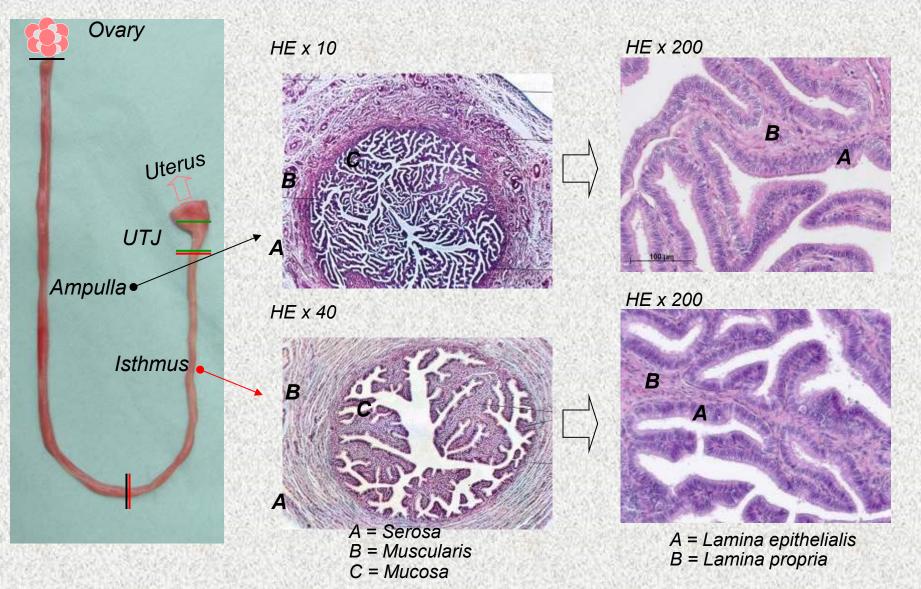
Poly-cystic ovarian degeneration (many, only) - 0.5 – 2%

"Quality"

Follicle-Theca/-Lutein-Cysts Lutein-Cysts "Blood-Follicles"


Cystic Ovaries

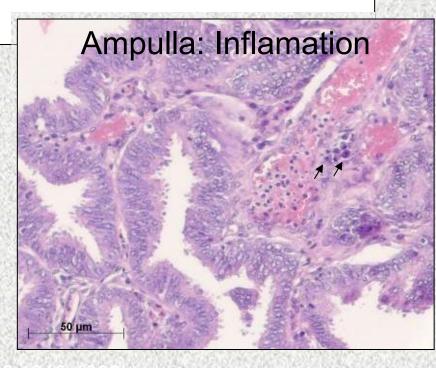
http://www.pig333.com/photo-of-the-week/26-Apr-2012_21/


Diseases

Malnutrition

Cystic Ovaries - Consequences

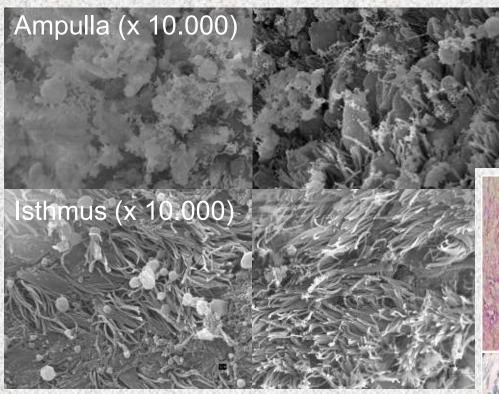
✓ Depends on Number rather than "Quality"


Single Cysts \Rightarrow No problem **Oligo-cystic ovarian degeneration Reduced litter size** Reduced pregnancy rate More returns Poly-cystic ovarian degeneration Infertility

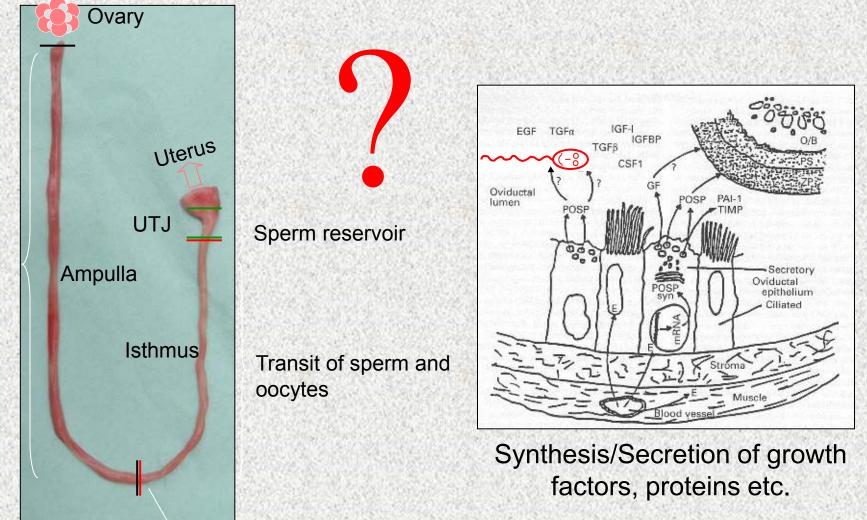
Tuba	l diseases i	n cull sc	WS
		aminski, H 1979 ²	leinonen et al., 1997 ²
Uni- or bilateral tubal occlusion		14.9 %	0.4 %
Pyo- or Hydrosalphinx	31.3 % (JS) 3.6 % (AS)		

(n = 40 repeat breeders ; 26 sows, 14 gilts)
Salpingitis

Total	Ampulla	Isthmus
n (%)	n	n
24 (60,0)	24	10


Pathogenesis

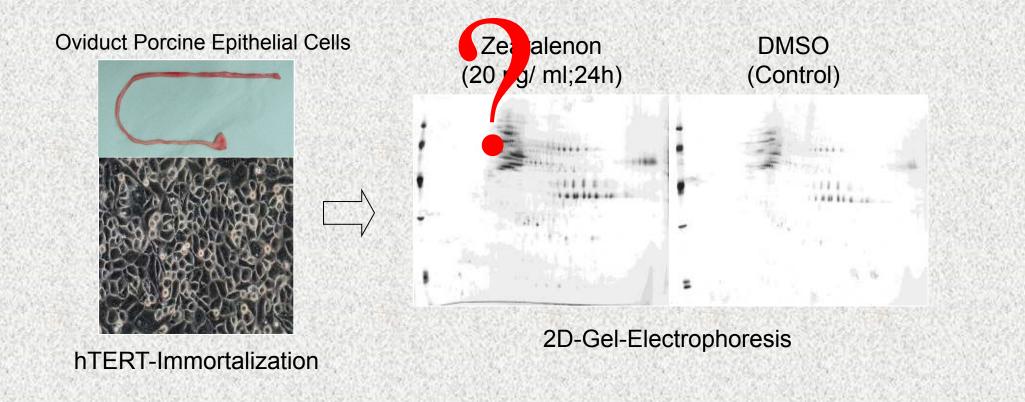
✓ secundary as the result of ascending infection from the uterus


✓ primary?

Chlamydia positive					Chlamydia negative	
Total ^a (n, %)	Oviduct		Uterus	Total ^c $(n, \%)$		
	Total ^b (n, %)	Ampulla (n)	Isthmus (n)	UTJ (n)	Total (n, %)	
26 (61.9)	19 (45.2)	9	13	13	14 (33.3)	16 (38.1)

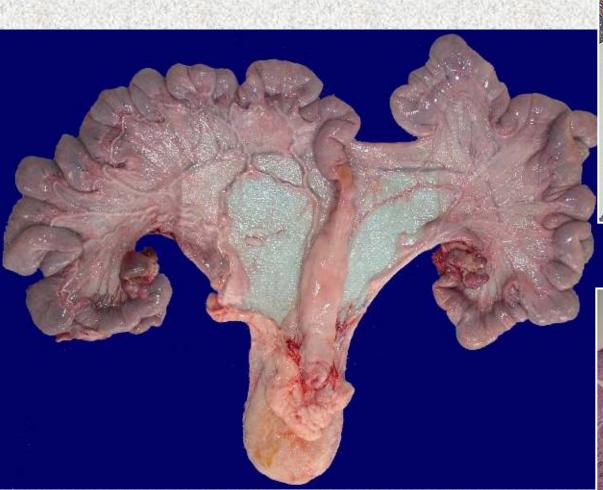
(Kauffold et al. Theriogenology 2006;66:1816-1823)

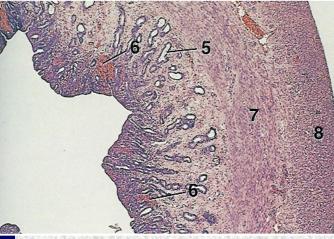
(Kauffold et al. Theriogenology 2006;66:1816-1823)

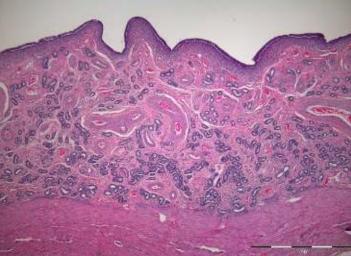

Fertilization

Transit of

oocytes


(Buhi et al. J Reprod Fertil 1997;52 (Suppl):285-300)


Oviduct – Non-Infectious



Hombach-Klonisch S, Pocar P, Kauffold J, Klonisch T. Toxicological Sciences. 2006

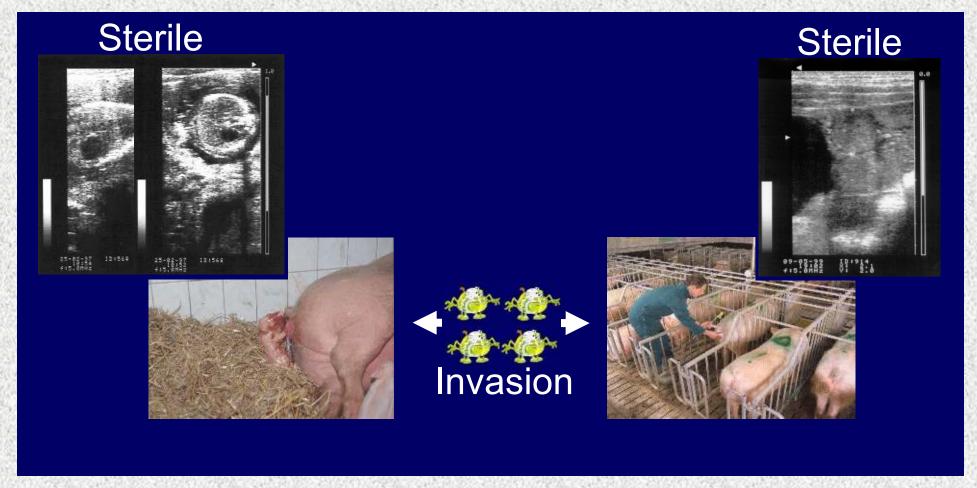
The Uterus

Uterine Disease - Tumorous

8 years bloody discharge Uterus 4.5 kg Adenocarcinoma

- Endometritis

→ 29/108 (27.0 %) Dalin et al., 1997

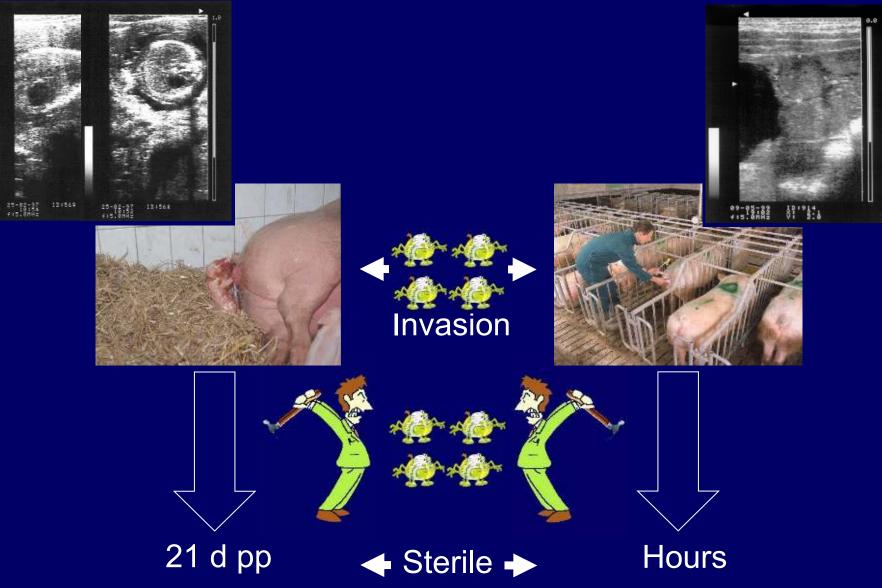

→ ~ 50 % mild

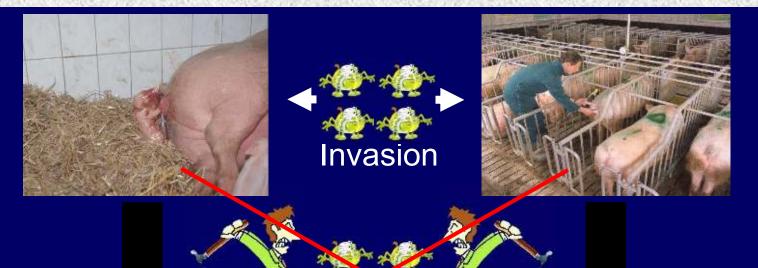
→ 86/216 (40.2 %) Bange, 2000

→ ~ 50 % slight

→ 43/45 (95.6 %) Kauffold et al., 2006

→ ~ 98 % chronic

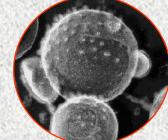


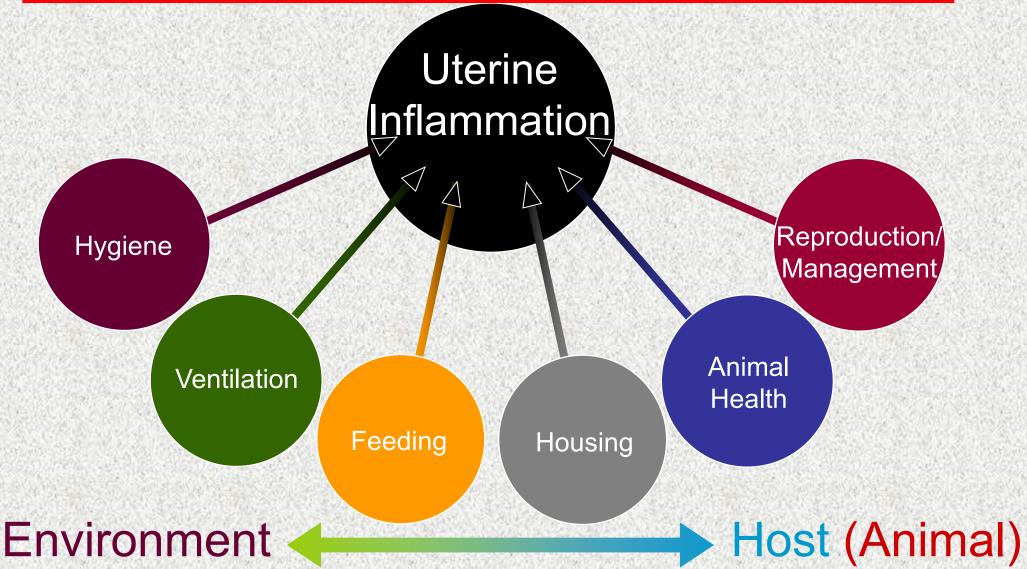

- \Rightarrow Sow/Gilt (Vagina, Bladder, Skin) \Rightarrow Ecces
- \Rightarrow Feces
- ⇒ Environment/ Equipment/ Personnel

$\Rightarrow Boar (Prepuce) \\\Rightarrow Ejaculate/Semen$

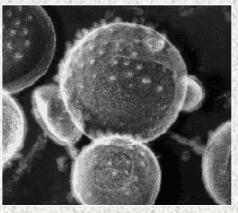
Sterile

Sterile



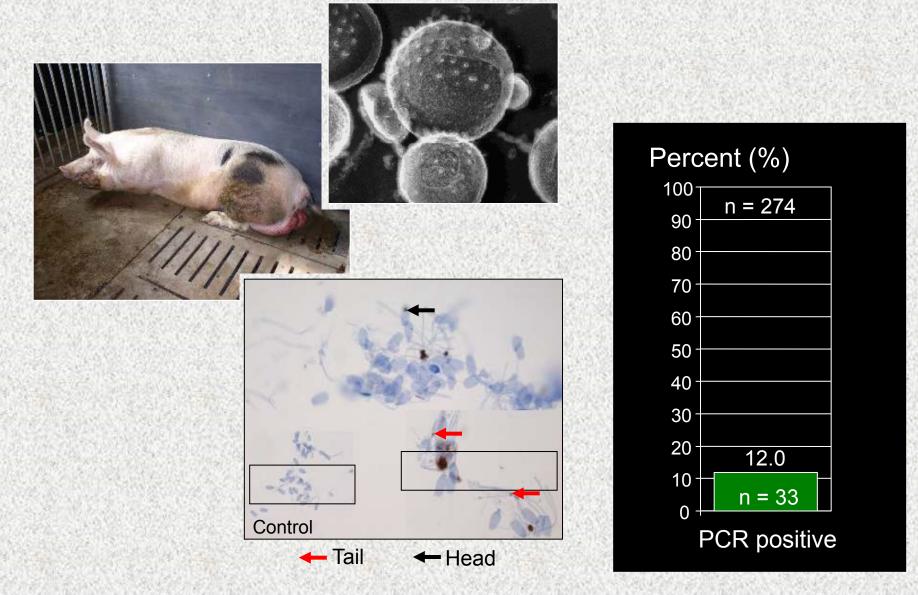

Acute (clinical) Endometritis

Chronic Endometritis

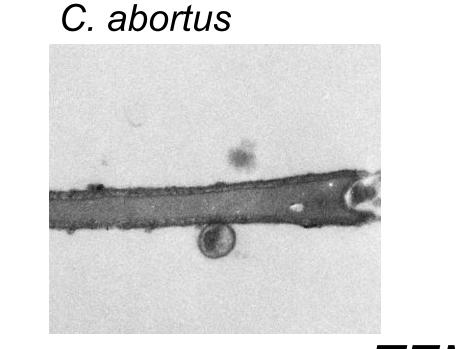


Results of microbiological investigation of genital specimens (399 genital tracts, 121 farms)

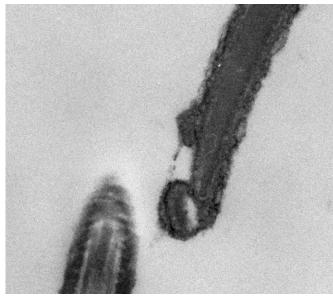
Group	% Specimens positive					
	2005	2006	2007	Total		
E. coli	66.6	78.9	90.5	76.1		
Aeromonas hydrophila	21.8	43.2	44.4	32.8		
Streptococcus	14.1	11.6	14.3	13.4		
Proteus mirabilis	7.1	7.4	7.9	7.3		
Others	13.5	12.6	17.5	14.0		
Chlamydia	12.8	11.6	3.2	10.5		


(Schnurrbusch et al. Praktischer Tierarzt 2009;3:244-255)

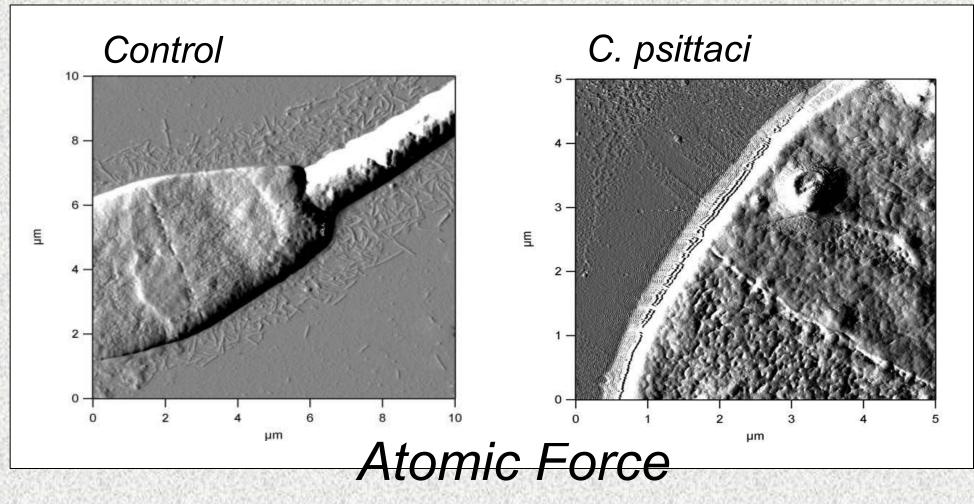
Uterus - Infectious

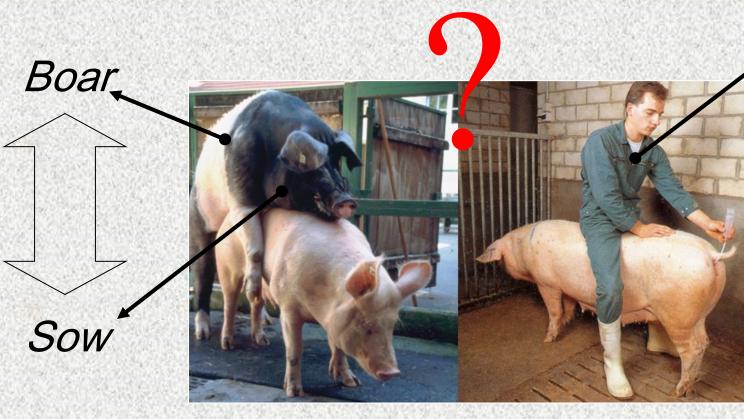


vtal ^c (n %)
Total ^c (n, %)
j


(Kauffold et al. Theriogenology 2006;66:1816-1823)

Chlamydia attached mostly to the head. Occasionally also to the tail.

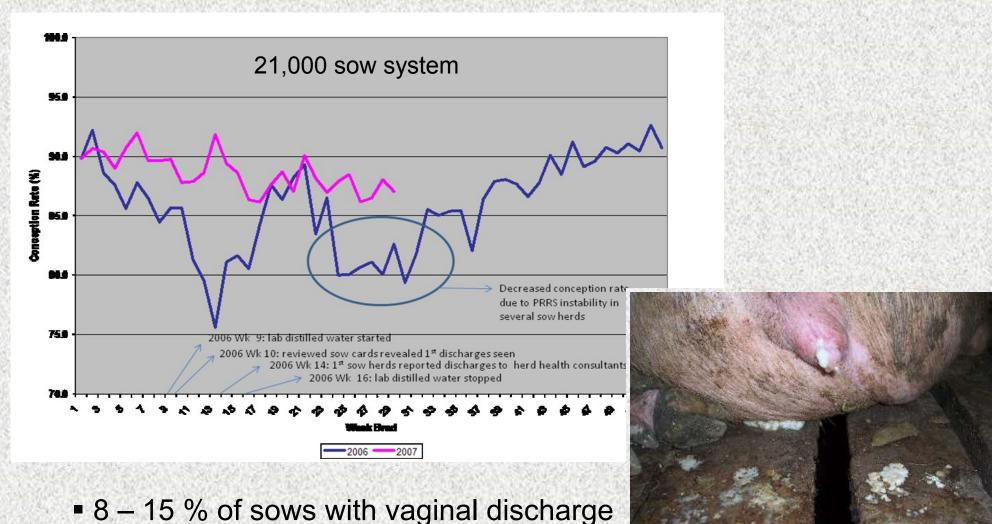




Chlamydia can invade the sperm through the cell membrane.

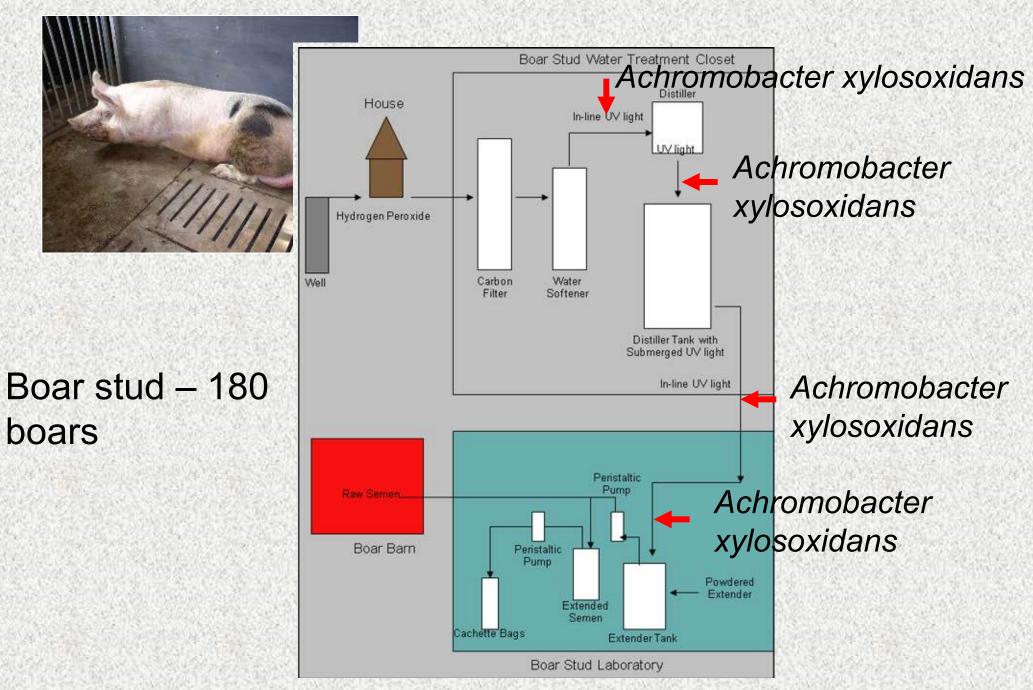
Hitchhiker?

Willi


Semen transmitted bacteria

- Fall/Winter:
 - \Rightarrow Acinetobacter spp.
 - \Rightarrow Ralstonia pickettii
 - \Rightarrow Serratia marcescens

- Spring/Summer:
 - \Rightarrow Enterobacter spp.
 - \Rightarrow *Enterococcus* spp.
 - \Rightarrow Pseudomonas aeruginosa
 - \Rightarrow Steno. maltophilia


No seasonal preference: Achromobacter xylosoxidans, Coagulase-negative Staphylococcus spp., Corynebacterium sp., Klebsiella oxytoca

(Althouse et al. Theriogenology 2008;70:1317-1323)

- 3 19 Tage post inseminationem
- Endometritis
- Micro (swabs, post mortem): Achromobacter xylosoxidans

(Payne et al. J Swine Health Prod. 2008;16(6):316–322)

(Payne et al. J Swine Health Prod. 2008;16(6):316–322)

Deoxynivalenol (DON)

Mycotoxins

50 % CR Vaginal discharge/endometritis DON in bile

DON in straw-

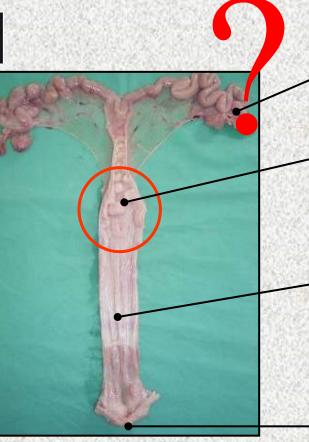
75 % CR

DON in new straw

1D 008	96.4		
ID 1069	98.2		
ID 1535	100		
ID 1095	5.4		
Straw	3.93		
New S	100		

Some words on Microbiology

"The way of swabbing"



Some words on Microbiology "The place of swabbing"

Slight amounts: E. coli High amounts: Enterococcus sp. Slight amounts: Staphylococcus aureus Moderate amounts: Enterococcus sp. Slight amounts: Sc. dysagalactiae ssp equisimilis High amounts: Staphylococcus aureus ➤ E.coli Enterococcus sp.

Sc. dysagalactiae ssp equisimilis

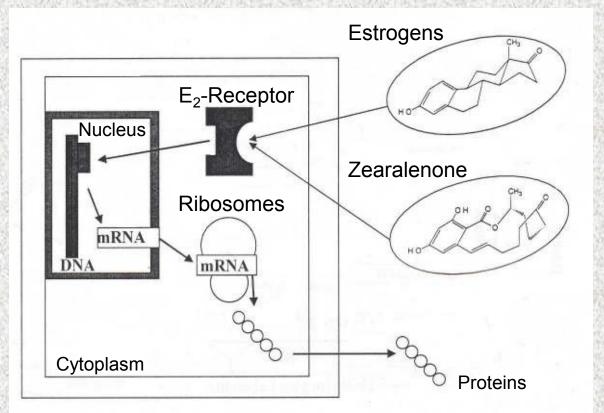
Some words on Microbiology

"Interpretation of the results"

Gram-positive	Gram-negative	Fungi
Staphylococcus aureus	Eschericha coli	Mucor
Arcanobacterium pyogenes	Acholeplasma hydrophila	Aspergillus
Streptococcus dysgalactiae spp. equisimilis	Pseudomonas aeruginosa	
Coagulase-negative <i>Staphylococcus spp.</i>	Aeromonas spp.	
Staphylococcus saprophyticus	Klebsiella spp	
Staphylococcus intermedius	Chlamydien spp.	
Bacillus spp.	Proteus spp.	
Enterococcus faecalis		

Some words on Microbiology Results of microbiological investigation of vaginal swabs recovered

Results of microbiological investigation of vaginal swabs recovered from 16 sows with vaginal/vulval discharge


Herd		
number	Bacterial growth	inter-states and in
Pl	Escherichia coli	
Pl	Fusobacterium necrophorum	
P2	Lactobacillus sp.	
P2	Peptostreptococcus sp.	A State Barris
P2	Actinobaculum suis	0
P3	Porphyromonas sp. Anaerob	IC Grov
P3	Prevotella sp.	
P3	Clostridium perfringens	
P4	Coliform sp.	
NI	Pasteurella sp.	
N1	Escherichia coli	A MARCH STREET
N1	Arcanobacterium pyogenes	and a state of the state
NI	Peptostreptococcus asacharolyticus	and a start of the second
NI	Staphylococcus aureus	
N2	Coagulase-negative staphylococci	
N3	Escherichia coli	

(Oravainen et al. Reprod Dom Anim 2006;41:549–554)

Mycotoxins

Aflatoxins Ochratoxin Citrinin **DON** (Vomitoxin) Zearalenone **Fumonisin** Ergotoxin **T2**

Zearalenone

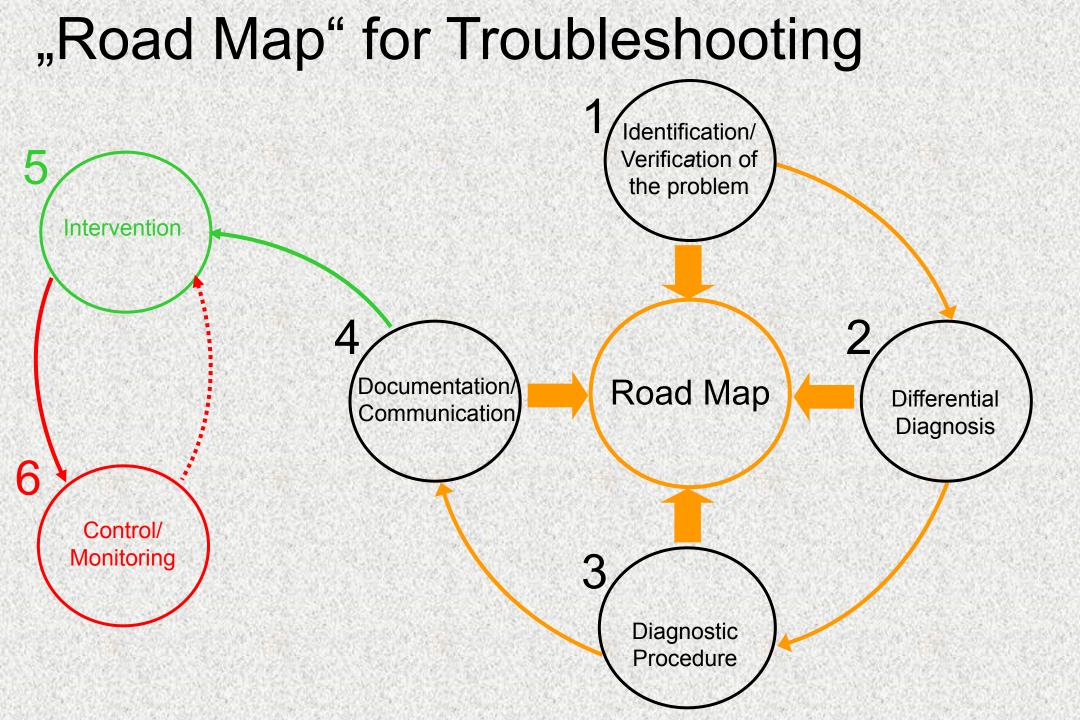
- Hyperestrogenism
- Impaired oocyte maturation
- Reduced follicular steroid synthesis
- Impaired embryonic development
- → Increased embryonic mortality
- Delayed onsed of puberty
- → Enlarged uteri & excessive endometrial edema
- Ovarian abnormalities (cysts, persistent CL, inactive ovaries)
- Irregularities of the estrous cycle
- → Pseudopregnancy

Did a study where we were fed ZEA between day 101 -114 of pregnancy and over a 21 day lactation.

Did not see signs of hyperestrogenism either in piglets or sows!!

ZEA(like DON) – an every day & sometimes frustrating Challenge! 1. Do we know about the effects of exposure? 2. What is the right specimen for analysis? - bile, blood, milk versus feed... 3. "Critical" concentration in biological specimens? 4. What methodology (i.e. ELISA versus HPLC/MS)?

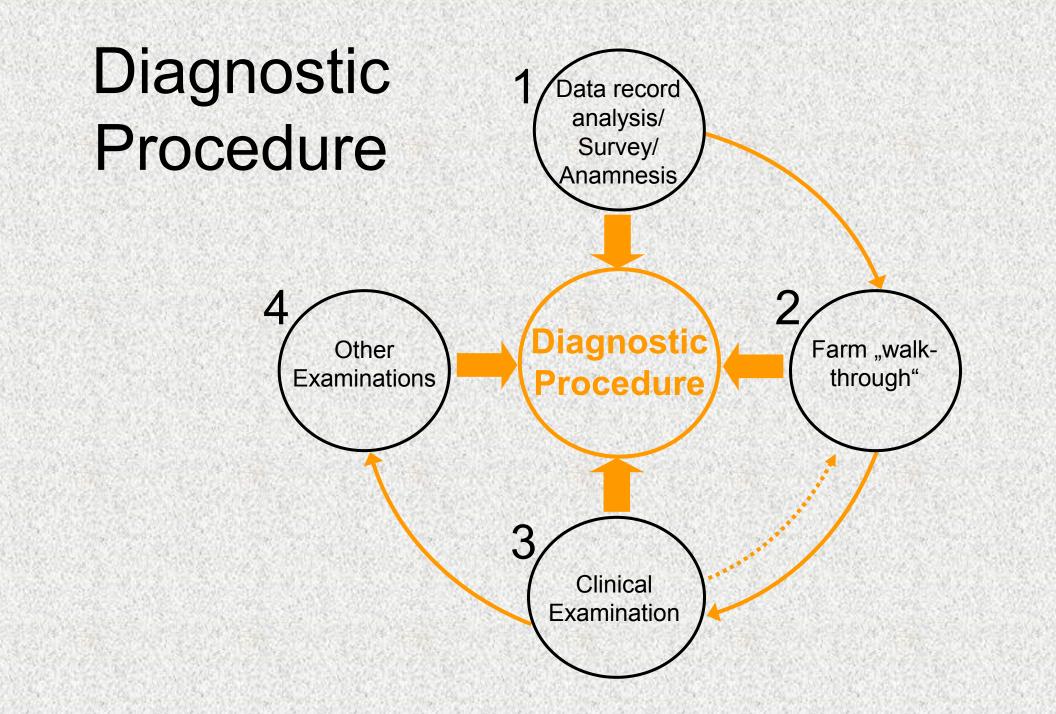
Methodology (DON)


Results of Analysis of different Substrates for DON and metabolites (DOM) (after

Poweleit, 2008)

			85 ANI 195 AN 196 TOMOS AN	
Samp ID	le Sample Type	Lab		
lessine.		A	В	С
		DON	DON/DOM	DON/DOM
1	Milk Sow 1	75 µg/l	<0.5/<0,5 µg/l	
2	Milk Sow 2	103	<0.5/<0,5	
3	Milk Sow 3	120	<0,5/<0,5	
4	Serum Sow 1	117.5 μg/l	<2/<2 µg/l	<1.5/1.2 µg/l
5	Serum Sow 2	22.5	<2/<2	<1.5/1.2
6	Serum Sow 3	48.8	<2/<2	<1.5/1.2
7	Serum Piglet 1	69.5	<2/<2	<1.5/1.2
8	Serum Piglet 2	73	<2/<2	<1,5/1.2
9	Serum Piglet 3	105	<2/<2	<1.5/1.2
10	Lac feed	< 134 µg/kg	77	
STURINE A				

Lab A:ELISA Labs B & C: HPLC/MS


Triangle of Reasons for Reproductive Failure

Management

Low Conception Rate

- Sow
 - Ovulation failure?
 - Endometrits?
 - Mykotoxins?
 - PRRS, PCV2, PPV
 - Body condition?
 - etc
- Boar
 - Semen Quality?
 - Semen Storage?
- Personnel/Management
 - Insemination?
 - Stress?
 - Pregnancy Diagnosis?

Data record analysis just important!!

Clinical Examination

Inspection

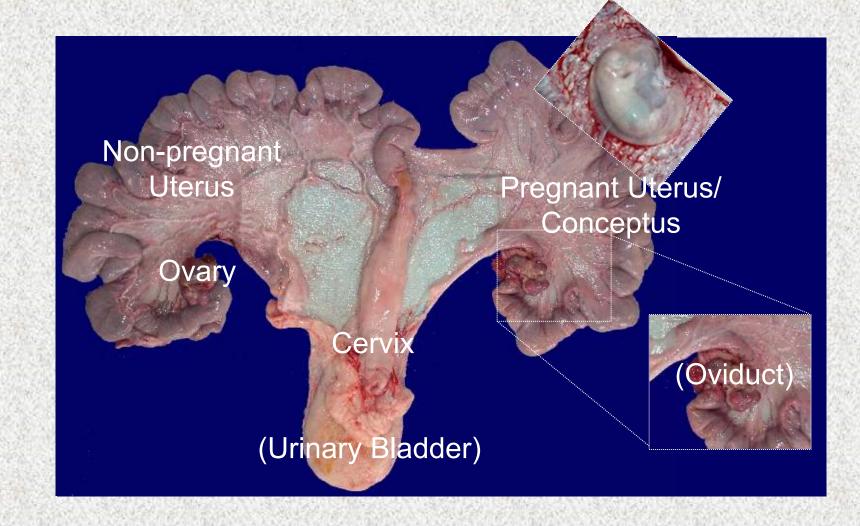
Inspection

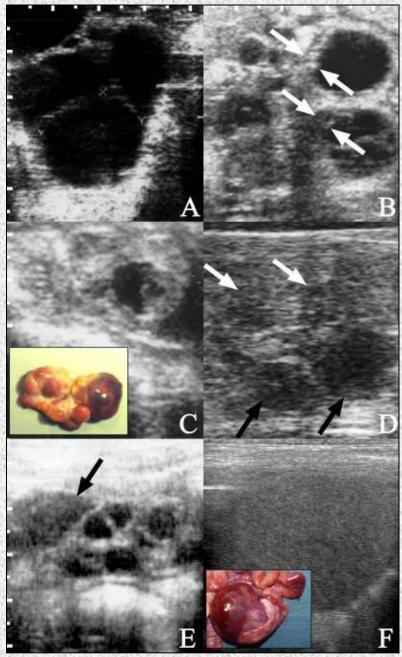
1000

*

<u>Ultrasonography</u>

an an an




Ultrasonography

http://www.petra-und-peter.de/media/s3/schwein14.jpg

Has made the pig transparent.

The Female Reproductive Tract

Ovaries

A – Polycystic ovarian degeneration (thin wall, follicular)

B – Polycystic ovarian degeneration (thick wall, luteal)

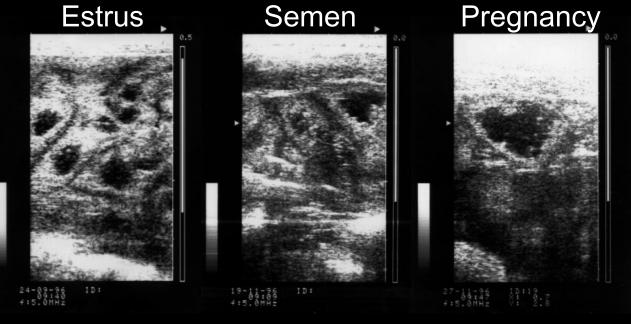
C – Blood cyst

D – Oligocystic ovarian degeneration (two cysts & CL)

E – Paraovarian cyst

F – Intraabdominal testicleresembling structure in a gilt

(Kauffold & Althouse, Theriogenology, 2007)

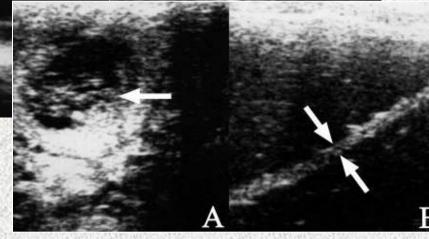

Non-gravid (non-puerperal) Uterus

Parameters to be recorded

Fluid echogenicity ("Content") Echotexture Size

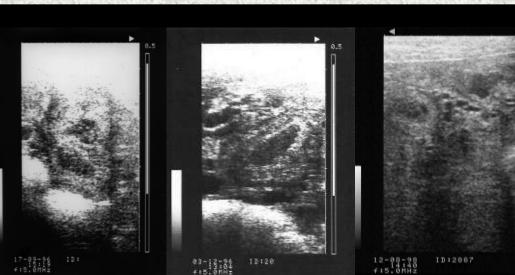
(Kauffold & Althouse, Theriogenology, 2007)

Fluid echogenicity Abnormal unless Pregnancy Estrus Semen


(Kauffold & Althouse, Theriogenology, 2007)

Abnormal Fluid Echogenicity

Abortion Day 21 Day 21 Day 28

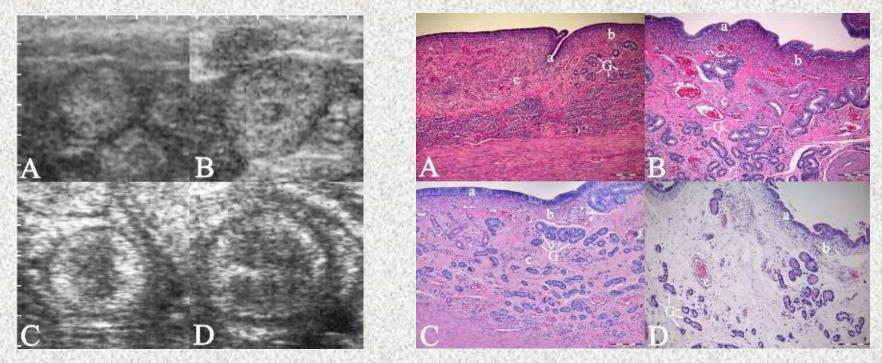


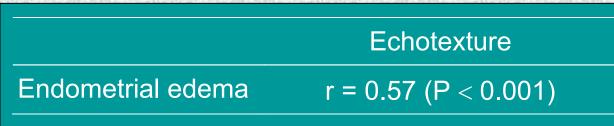
Embryo in decomposition

Hydrometra

(Kauffold et al., Tierarztl Prx, 1997; Kauffold & Althouse, Theriogenology, 2007)

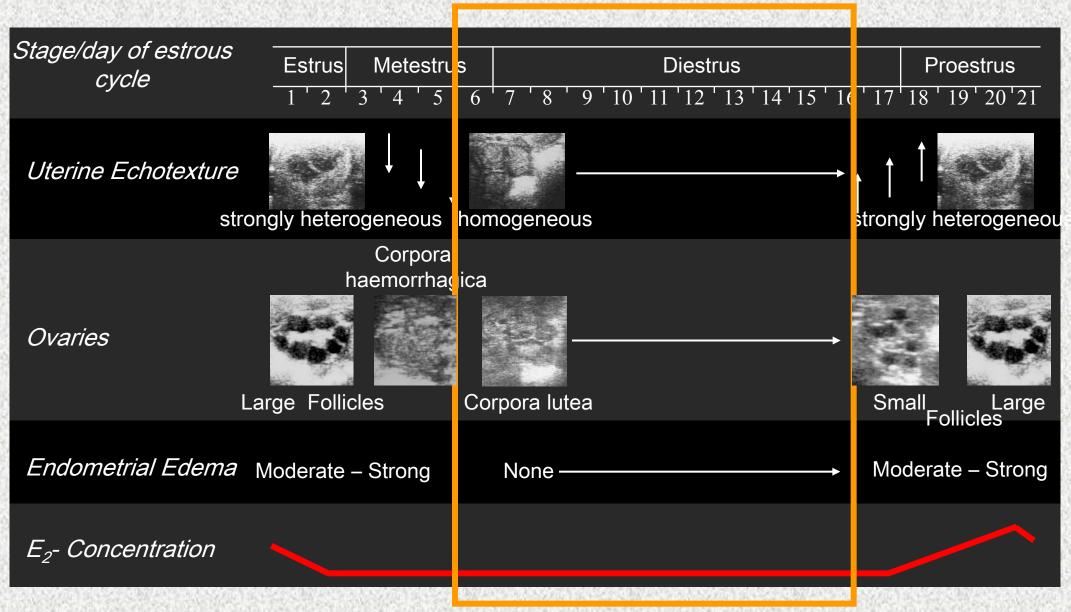
Abnormal Fluid Echogenicity




12-08-98 14:40 f:5.0MHz

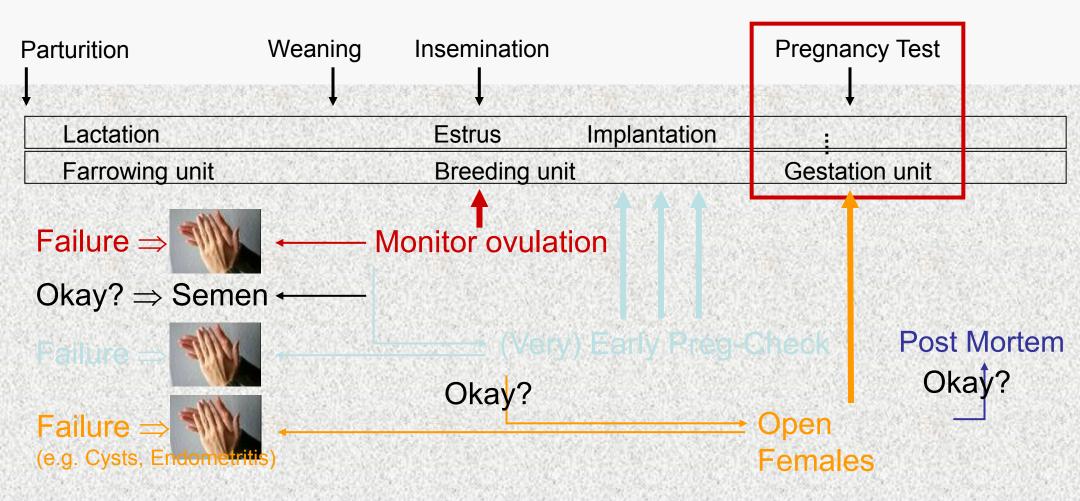
Endometritis (acute & sub-acute)

Echotexture


Sows/gilts with reproductive failure (n = 47) Ultrasonography and histology of the uterus

(Kauffold et al., Theriogenology, 2005)

Echotexture


Echotexture

"A specific uterine echotexture requires a specific ovarian configuration (e.g. CL, Follicles) and vice versa. Any discrepancy is considered abnormal."

What is the Echotexture good for?

- The more heterogeneous, the less fertile
- CI & heterogeneous echotexture = pseudopregnancy

Low Conception Rate

Somewhere in the US

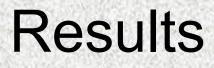
"... sow farms have experienced late-term fallout defined as a sow that has preg-checked positive at 35 days via real-time ultrasound and then fails to farrow. These sows are not recognized as showing signs of estrus in the farm. They are noticed during a visual check around 75-80 days of gestation as not having outward signs of pregnancy. ... The percent fall-out post preg check will vary, but typically will be 10-15 %... whereas it is 5-9% in other operations with similar management..."

Late Fallout – Diagnostic Procedure

Comprehensive Record(ing) Analysis Serology Bacteriology Water & Feed Analysis > Ultrasonography Post mortem of Organs of the Urogenital Tract Analysis for Mycotoxins (Bile)

Late Fallout – Diagnostic Procedure

Parturition	Weaning	Insemination	Pregnancy ⁻	lest (day 35)
Lactation		Estrus Ir	nplantation	
Farrowing	unit	Breeding unit	Gestat	on unit



Results

Comprehensive Record(ing) Analysis ⇒ Data Entry erroneous

Serology Bacteriology Water & Feed Analysis

Negative/ Inconclusive

> Ultrasonography \Rightarrow No Fallouts!!

Post mortem of Organs of the Urogenital Tract Analysis for Mycotoxins (Bile)

Negative/ Inconclusive

Late Fallout – Diagnostic Procedure

- Scanned 2 Groups with app. 230 Gilts/Sows pregnancy day 35 & 42 (after farm preg-check has been done)
- 8–12 % incorrect diagnoses (positive/negative)

Late Fallout – Value

Reduced open days Reduced diagnostics

Improvements

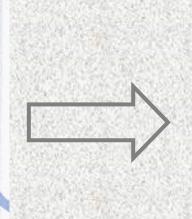
Mental (except the heat checking person) Data entry Heat checking procedures PD procedures (purchase of u/s machines)

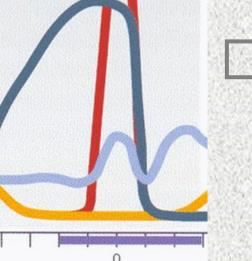
Take Home Message

Management! "Think easy first". Road Map! Helps to avoid useless Diagnostics & saves Money & Time.

Take Home Message 1. As for reproduction there is always room for improvement - necessity to know about repro and the way to examine pigs. 2. Multitude of reasons (also at the organ level) 3. Still several unknown issues. More or less crucial. 4. However....Management, Management, Management...!!!

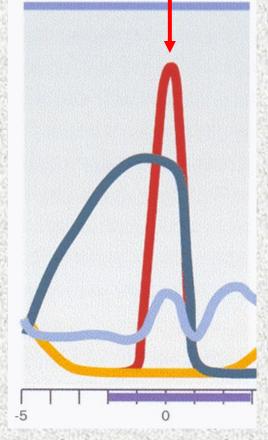
Many Thanks for Attention!


Oviduct - Infectious


 Did not see a correlation between histopathology and Chlamydia-positivity

Did find Chlamydophila (Cp.) psittaci (n = 18),
 Chlamydia (C.) suis (n = 10), C. trachomatis (n = 3) and Cp. abortus (n = 2)

(Kauffold et al. Theriogenology 2006;66:1816-1823)


Cystic Ovaries - Pathogenesis GnRH

-5

Cystic Ovaries - Pathogenesis

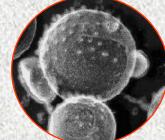
Single cysts/ Oligo-cystic ovarian degeneration

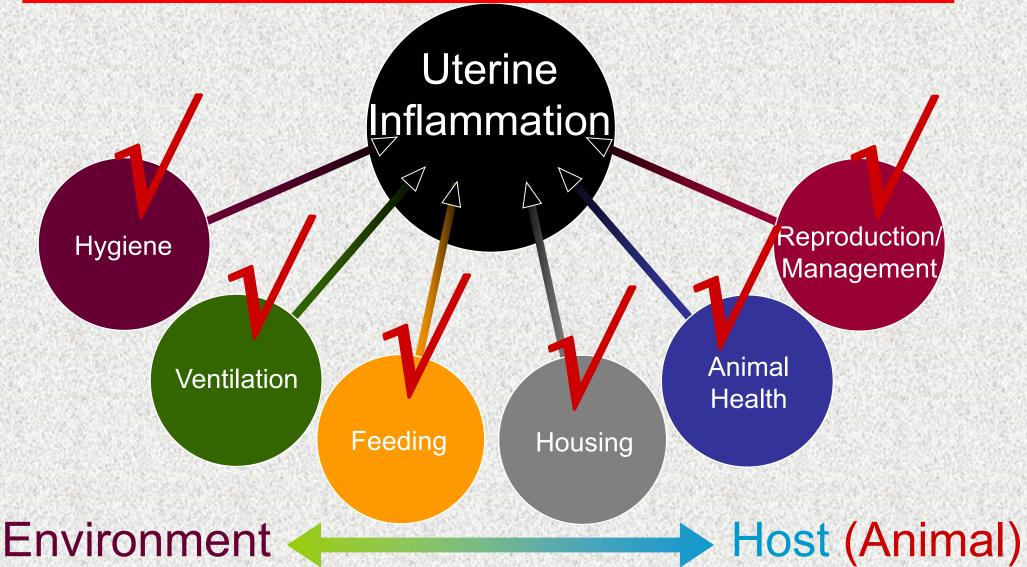
As the result of ? (Single follicles with insufficient LH-receptors?)

Uterine Inflammation -Nomenclature

- Puerperal versus Non-puerperal
 Clinical versus Non-clinical
- Severity (mild/slight/moderate/ etc.)
 Clinical course (chronic, acut/sub-acut)

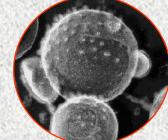
Inflammation of the Uterus

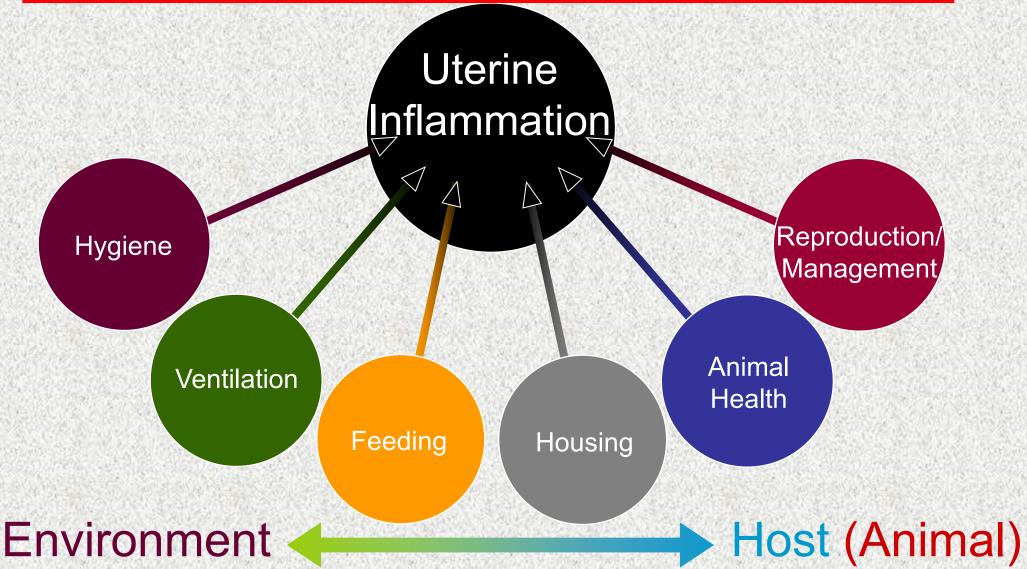

Clinical course


Depends on type of inflammation – either no (except for returns) or discharge; seldom also off feed and fever

Treatment of uterine Infection

Not at all? Antibiotically versus Antiseptically? Locally? Systemically? Both? Ozon?


Cervix/Vagina – Congenital & Miscellaneous


Persistent hymen

>??

> Injuries as the result of birth problems

1. As for biological substrates, we currently donot have values that unambigously tell us a critical exposure! 2. Also, be careful with clinic & post mortem, as the picture can be extremely variable!

Things to Consider 1. Would need validated tests for each single specimen!

(Bild: http://www.boersennotizbuch.de/wpcontent/uploads/im/frequent/wuerfeln.jpg)

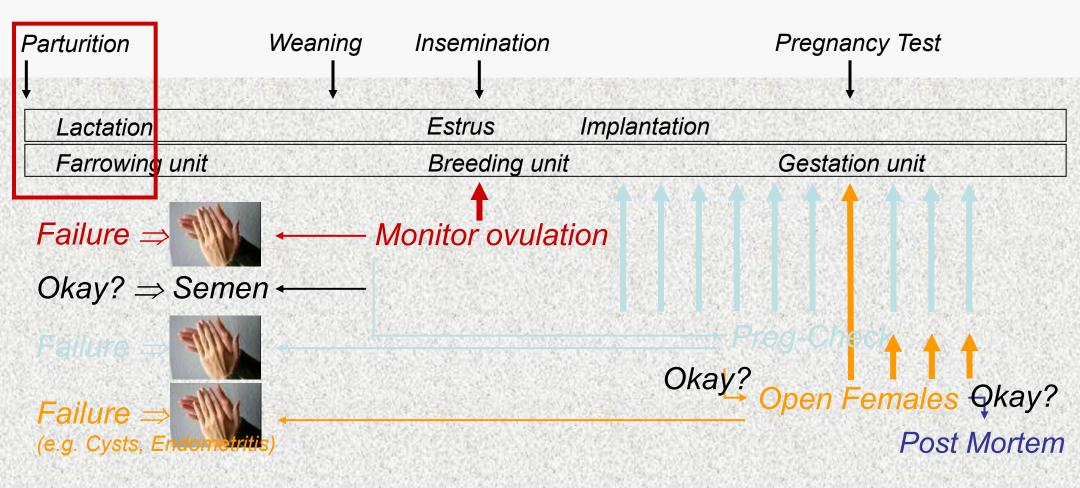
2. If there is a choice always ask for HPLC/MS.3. Remember that not every substrate is appropriate!

Sow Herd Level: Common Problems (related to production parameters)

Low Conception/Farrowing Rate Late Fallout Low Litter Size **Delayed/No Puberty Attainment Vulval Discharge** Long Wean-Estrus-Interval **Regular/Irregular Return to Estrus Embryonic Mortality/Abortion MMA**

Cystic Ovaries - Therapy Cech & Dolezel, 2007: Treatment with twice a GnRH analogue in a 12-hrsinterval - cure rate of 84 %

Kauffold et al.: 15.000 IE hCG – 50% cure rate (n = 24); PR 50 %


Kauffold et al.: Regumate 18 days – cure rate 100 % (n = 8); PR 100 %

Kauffold et al.: Slaughter – 100 % cure rate (some problems with pregnancy though)

Repro Exam in the Pig – "Bottlenecks"

- 1. Pigs can't be really restrained.
- 2. The manual rectal examination of the genital organs is not that easy or impossible (gilts).
- The cervix can't be easily penetrated.
 The money value of a pig is low.

Low Farrowing Rate

Culling Reasons for Sows

Stalder et al. Sow Longevity. Pig News and Information. 2004;25:53N-74N.

- Analyzed removal reasons between 1960 and 2000:
- # 1 Reason was ReproductiveFailure ranging between 8.8 and39.2 %

Returns (regular/irregular) Sow

- Ovulation failure?
- Endometrits?
- Mykotoxins?
- PRRS, PCV2, PPV
- Body condition?
- etc
- Boar
 - Semen Quality?
 - Semen Storage?
- Personnel/Management
 - Insemination?
 - Stress?
 - Pregnancy Diagnosis?