

Ph.D project

supervisors: Tim Kåre Jensen, Mette Boye (DTU VET)

New Neonatal Porcine Diarrhea in Denmark. Characterization of the intestinal lesions and identification of the etiology.

- Histopathology
- Morphometry
- Fluorescence In Situ Hybridization (FISH)

Histopathological examination

- villous and crypts structure
- epithelium structure
- infiltration of the lamina propria
- goblet cells, intraepithelial lymphocytes
- inflammation
- necrosis

Pathological findings: Villous atrophy (62% diarrheic piglets)

- ✓ Short, blunt villi
- ✓ Flattened- low columnar/cuboidal/squamous epithelium
- ✓ Increased cellularity of the lamina propria
- ✓ Hyperplastic crypts
- ✓ Other pathological changes (congestion, edema, lacteal dilatation, hemorrhages, enterocyte vacuolation)

Morphometry

- Villous length
- Crypt depth
- Mucosa thickness
- •Mean villi length
- Villous/crypt ratio

Morphometry

Villi and crypts length in jejunum and ileum

Morphometry

Classification of villi based on mean villi length and structural lesions

Villi length alterations in piglets

(based on the higher/worse classification score)

Pathological findings

normal epithelium

Epithelial lesions (31% diarrheic, 16% control piglets)

Pathological findings

normal cellularity

increased cellularity

neutrophil granulocytes

Slight local infiltration with neutrophils (38% diarrheic, 24% control piglets)

		Herd 2		Herd 3		Herd 4		<u>total</u>			
Pathological changes	D n=16	C n=16	D n=12	C n=12	D n=14	C n=14	D n=42	C n=42	D ~%	C %	
Villous atrophy	9	2	9	1	8	0	26	3	62	7	
Neutrophils infiltration	7	6	6	2	3	2	16	10	38	24	
Other changes in lamina propria	5	4	9	2	3	1	17	7	40	16	
Epithelial lesions in small intestines	6	4	5	1	2	2	13	7	31	16	
Mucosal necrosis	1	1	0	0	0	0	1	1	2	2	
Epithelial lesions in colon	2	1	5	1	5	1	12	3	28	7	

Histopathology results (42 diarrheic and 42 control piglets from herd 2,3,4)

Fluorescence In Situ Hybridization (FISH)

- Detection of bacteria in formalin-fixed, paraffin-embedded tissue samples
- 16s rRNA-targeted fluorescence-labelled oligonucleotide probes
- Characterization of bacterial adhesion to the epithelium

- > Escherichia coli
- > Clostridium perfringens
- Costridium difficile
- > Eubacteria

FISH E. coli (red)

FISH results

Escherichia coli

Moderate- large amounts **adherent** to the epithelium in 14 diarrheic piglets (33%) In 10 cases associated with villous atrophy

Clostridium perfringens

Very small-moderate amounts in 31 diarrheic piglets (74%) In 1 control piglet assosiated with necrotic mucosa in the ileum

Cl. perfringens (red)

Cl. Perfringens type C (KlassiskTarmbrand?)

lleum of diarrheic piglet from herd 5

FISH Cl. perfringens (red) Eubacteria (green)

FISH results

Clostridium difficile

Positive signals within the intestinal content in the colon of 19 diarrheic piglets

Other bacteria

Present in 27 diarrheic piglets
In 1 case assosiated with necrotic mucosa in the ileum

Eubacteria (green)

Bacteria in necrotic tissue

Necrotic ileal mucosa heavily colonized by bacteria.

Double hybridization for *Domain bacteria* (green) and *E. coli* (red).

Case piglet from herd 2, 5 days old, diarrhea days- 2+3+4+5 Microscopically- superficial necrosis of the mucosa in the ileum

Laser Capture Microdissection LCM

-allows for the removal from tissue of small structures in a manner that preserves the important molecules we are interested (RNA and protein)

-to analyze pathogenic bacteria in histological tissues

"The eye of a human being is a microscope, which makes the world seem bigger than it really is."

Kahlil Gibran

Early microscopes