Genetic has an influence on production levels

Practical experience with different sow lines in France

Fabien Larcher Selvet Conseil

Program

1. French production

- 1. Global observation
- 2. Performance of French herds

2. Performance and genetic

- 1. French genetics
- 2. Danbred
- 3. The sow in France around farrowing

Quick overlook of the French pig production

High pig density in West of France

- ▶ 2009
 - 1,1 million sows
 - 24,9 pigs culled

Quick overlook of the French pig production

 Development of French pig production historically bound to Coops

Coops with a full management of the production

- Genetic
- Feed
- Slaughterhouse
- Veterinary and technical service
- •
- Different approaches for the different groups
- Technical improvement sometimes worked in common through the Ifip (French equivalent for Dansk Svineproduktion)

The French herds

210 sows / herd

- ▶ Farrow to finish units (70% of the sows in 2009)
- Growth of multisite units proportion

The French herds

Older building

- In 2008, 75% of French pig facilities were older than 15 years old
- Data that must be taken in count to compare Danish and French figures

Welfare

- Less than 30% of the sows housed in group in France
- More than 70% in Denmark

Health status of French herds

PRRS

Only EU strain in the western part of France

Influenza

- H1N1 and H1N2 (new strain in extension)
- Mycoplasma hyopneumoniae
 - Most commercial herds positives

Actinobacillus pleuropneumoniae

- Most virulent strains B1S2, B1S9
- Brachyspira hyodysenteriae
 - No clinical signs, no official status
- Mange
 - Most commercial herds positives
 - No official status

Productivity levels

	Mean	Best 25%	Worst 25	Dk (2008)
Weaned / sow in production/year	27,9	29,7	24,9	27,2
Weaned / litter	11,3	11,8	10,3	12,1
Live born / sow	13	13,4	12,3	14
Dead born	1	1	1,1	1,8
Mortality until Weaning	13,1	11,2	16,4	13,8
Lactation lenght	24,3	22,9	26,1	32
Weaning Weight	7,3	7	7,6	7,3
Number of cycle / year	2,47	2,52	2,4	2,25
Days from Weaning to 1st service	6,2	5,9	6,8	5,1
Fertility (%)	89	91,4	84,3	

Annual report 2009 - Danish Agriculture and Food Council, Pig Research Centre.

Le Porc par les Chiffres, éditions 2010 – 2011 – Ifip Institut du porc chêne vert

Comments on productivity

Higher prolificacy in Denmark

15,8 total born vs. 14

But smaller difference on total live born

- Increase in Dead born
- Same tendency observed in the highly prolific herd in France (often more than 1,5 dead born if more than 15,5 total born)
- Limit to the prolificacy improvement
- Work to do on viability of the piglet
- Difference in prolificacy explain the higher weaning performance / litter
 - Same mortality levels under the sow

Comments on productivity

Short lactation in France

- 24,3 days but 32 days in Denmark
- Rise of weaning at 21 days proportion

But same weaning weight than in Denmark (7,3kg)

- Lactation length is not weaning age (it is an overestimation of the age of piglet at weaning)
- Feeding strategies ?
- Genetic ?

Days from weaning to 1st mating

- 6,2 days in France; 5,1 in Denmark
- Change in the Danish calculation ?? (drop from 6 to 5,1 days between 2007 and 2008!)
- Can be also explained by a shorter lactation in France

Comments on productivity

- Equivalent number of weaned pigs / sow in production / year
 - 27,9/litter in France in 2009; 27,2 in Denmark in 2008
 - Just because of a shorter cycle

Performance and genetic

Genetic in French production

3 main genetic types

- Classic LW * LD cross breeding
- Breedings with Chinese blood (Meischan...)
- LW * LD * Duroc

Genetic suppliers

Many genetic suppliers

- Nucleus
- Gene +
- Hyporc / France Hybride
- Pen ar Lan
- ADN
- PIC
- Topigs / Daland
- (Danbred)

 Different genetic types for each supplier

Duroc lines and Topigs

- Good maternal behaviour
- Healthy sows (small loss of back fat during lactation, good legs, good longevity...)
- Small sows
- More nervous, harder to manipulate
- Lower prolificacy (even if we can see an improvement)

LW*LD

- Good prolificacy levels
- Medium maternal behaviour
- Bigger sows
 - Higher feed consumption (in particular for Hyporc sows (France Hybrid))
 - Inferior leg quality (even if improvements are done)

Chinese lines

Results close from classical LW*LD

- Best prolificacy levels (0,2 0,3 total born)
- Normally more maternal sows
- Good milking performance
- Good longevity
- A bit more difficult to conduct the feeding strategy.

Management great lines

- No big difference between the different lines
- Feeding program
 - Chinese lines : more extra-feeding after weaning
 - Duroc / Topigs : smaller loss of body condition during milking period – lower extra-feeding
 - Anyway small variation between genetics (0,2 – 0,3 FUso)
- Sow behaviour
 - Duroc / Topigs : avoid any intervention that is not necessary.
 - LW*LD / Chinese : less dynamic sow, more presence needed in farrowing unit.

Conclusion

Genetic is a source of variation of the results in farms

BUT it is secondary to

- Health status
- Feeding strategies
- Management of the farm

Too easy to say I will improve my results thanks to genetic when closing the eyes in front of the real problems

French genetics / Danbred

- Considering the fact that Danbred is the « only » genetic line in Denmark
 - Global Danish results reflects potential of the Danbred genetic

Comparison biased by many factors

- Management (milking period)
- Feeding strategies
- Buildings

Health status

Danbred

Close from the LW*LD hyper prolific

sow >>

- High ingestion levels
- More fragile sow
 - Higher mortality rate (15% in Dk vs 4,2% in France)
 - Bound in part to the long lactation in my opinion
 - Euthanasia if big shoulder wound
 - Thicker sow
 - But it doesn't explain such a mortality difference

Danbred

A very highly prolific sow

- Interesting to consider that genetic selection is done on the % of live born after 4 days
- Good homogeneity level of piglet regarding the prolificacy

A maternal sow

Easy to deal with farrowing

Danbred

Lactation quality

- If the national level represent the potential of Danbred
- Lactation length in not weaning age
- Doubt on the quality (only 7,3kg)
 - Litter daily gain : 2,5kg/days in Denmark, 3,3 in France (not so many variations between genetics)
 - Boar effect ? (Piétrain in France, Duroc in Denmark)
 - Good levels of ingestion of sows during lactation in Denmark
 - No energetic deficit during that lactation (there would be consequences on time from weaned to 1st service)
- I can't explain this point
 - Bound to excessive adoptions under the sow in Denmark?

The sow around farrowing in France

The farrowing management

Farrowing induction

- For a better surveillance of farrowing
- Gilts most of time not induced
- Important in the 3 weeks lactation (minimum 19 days of lactation for the uterus involution)
- Around 50% of farms induce parturition in our practice
 - ▶ 10% systematically on multiparous sows
 - ▶ 15% frequent use
 - ▶ 25% occasionally

Risk

- Too early induction
- Non viable piglets

Farrowing management

Farrowing

Possible to use oxytocin to stimulate farrowing

Use of prostaglandins after farrowing Done in a lot of farms to limit the risks of uteral

infection

Feeding strategies

Normal feeding strategy

- Weaning service : flushing for 4 days
- Gestation
 - ▶ 0 28 days : extra-feeding to recover good body condition (14 - 16 mm of back fat) : 3 to 4 FUso depending on the sow fatness.
 - ▶ 28 90 days : 2,5 FUso

▶ 90 days – farrowing : 3 – 3,5 FUso

Lactation

- D1 : 2,5kg of lactation feed then rise of 500g/day to 5kg then reduction of the rise rhythm
- Start with gestation feed to 5 days of lactation then transition on 3 days to lactation feed.

Feeding strategies

Evolutions in feeding strategies

- Historically linear feeding strategies in gestation (2,8 FUso)
- Increase of diminution of the feed distribution from 28 days to 90 days of gestation
 - ▶ For 10 years through the work of the Ifip
 - Drop to 2 FUso in some herds (sometimes not enough for me) with the influence of Vitfoss development in France
- Development of the distribution of lactation feed the week before farrowing
 - ► To improve lactation start
 - Limit : piglet diarrhoea

Conclusion

- Same performance levels between France in Denmark in farrowing units
 - Weaned piglets / sow / year
 - But different ways to come to those results!!!

 Genetic can be a way to improve the results but do not forget basic things

Thank you for your attention

