A farrowing rate of 95%: is it achievable?

Nicoline Soede Lia Hoving Wouter Hazeleger Bas Kemp

Billund, May 2010

... is variable between farms

e.g. 86% (77-93%); farrowing rate from 1st insemination on 68 farms with group housing within day 4 from insemination (Van der Peet-Schwering et al., 2009)

... is affected by parity ... is lower in rebreeders

e.g. Hoving et al., unpublished results (47.000 sows, 2001-2006)

parity	% (1 st insem)	% (rebreeders)
1	81.2% [′]	73.9%
2	79.9%	78.8%
>2	85.2%	72.8%

... is repeatable

e.g. (Hoving et al., unpublished) rebreeders in parity 2 have a 4.1% lower farrowing rate in parity 3 3.4% lower farrowing rate in parity 4

Contents

- Embryo development (in short)
- Mechanisms of embryo survival
- (Ir)regular rebreeding
- Factors affecting farrowing rate
 - Previous lactation
 - Insemination time and quality
 - Stress
 - Nutrition during early pregnancy
 - Season; 'autumn rebreeders'
 - Group housing?
- Concluding remarks

NB No discussion on infectious diseases

Day 6: hatching

Embryo in placental tissue in uterus

uterus

placenta

Sufficient space

Many oocytes + good fertilisation + synchronous

Factors affecting embryo survival (affecting both farrowing rate and litter size)

(Ir)regular rebreeders

Regular rebreeders

- Day 18-24 or Day 39-45; >50%

Irregular rebreeders

- esp. Day 24-35 [e.g. 'autumn rebreeders']
- 'Other; scattered

Factors affecting embryo survival (affecting both farrowing rate and litter size)

- Quality of oocytes
- Quality of uterus
- Fertilisation rate
- Quality of embryos
- Number of embryos at Day 11-13 ____
- Embryo uniformity at Day 11-13
- Embryo-uterine synchrony Day 12-18
- Uterine crowding Day 20-115

Regular returns

Litter size

Litter size

Factors affecting farrowing rate

- Previous lactation

- Insemination time and quality
- Stress (during early pregnancy)
- Nutrition during early pregnancy
- Season; 'autumn rebreeders'
- Group housing?

Lactation weight loss affects FR%...

Thaker and Bilkei (2005)

.. Lactation feed intake affects embryo survival

		WOI (c	(k	# 00Cy	/tes	Embryo s	urv.(%)
N	wean	Η	L	H		Н	
King and Williams, 1984	d32	7.6	19.9	14.4	<u>13.5</u>	70	72
Kirkwood et al., 1987	d35	4.3	5.8	18.1	18.6	83	68
Kirkwood et al., 1990	d28	6.0	8.9	17.6	17.7	83	72
Baidoo et al., 1992	d28	5.9	<u>7.5</u>	16.2	16.7	85	64
Zak et al., 1997 L: wk1-3	d28	3.7	<u>5.6</u>	19.9	15.4	88	87
L: wk4	d28		<u>5.1</u>		15.4		64
Zak et al., 1998	d28	4.2	6.3	14.4	15.6	83	<u>72</u>
Quesnel and Prunier, 1998	d24	5.7	5.9	19.2	20.7	-	-
Van den Brand et al., 2000	d22	5.1	<u>5.7</u>	18.1	16.4	68	68
Terletski et al., 2004 ¹	d21	6.6	6.7	18.6	16.7	64	69
Vinsky et al., 2006 ²	d21	5.3	5.4	18.3	18.2	79	68
Edmonton, unpubl.	d21	5.7	5.5	18.5	<u>17.5</u>	65	78?

NB H \sim 80-90% of ad libitum; L \sim 40-60% of ad libitum

LH-pulsatility restores during lactation

Kemp et al. 1995

LH-pulsatility is affected by feed intake

67 MJ/DE (high) or 50 MJ/DE (low) per day

Van den Brand et al, 2000

Lactational feed intake affects follicles

	Ad lib	50% ad lib
# LH pulses/6h before weaning	1.5 a	0.2 b
# Follicles larger than 4mm		
day of weaning	2.5 x	0.2 y
2 d after weaning	12.2 x	6.8 y

ab P<0.05, xy P<0.10

Quesnel et al., 1998

Thus, lactational weight loss affects:

=> Follicle development during lactation

=> number of follicles

=> oocyte quality => embryo quality

=> follicle quality => CL quality (=uterine quality)

 \Rightarrow Litter size

 \Rightarrow Farrowing rate

Stimulating follicle development during and after lactation

Feed intake lactation

- gilts:sufficient weight at farrowing
- moderate body condition at farrowing
- moderate temperature (above 16°C: -0.18EW/°C)
- good water intake

Weaning management

- number of piglets
- (- lactation length?)

After weaning

- sugar-rich diets (insulin-stimulation)
- Intensive boarcontact

Factors affecting farrowing rate

- Previous lactation
- Insemination time and quality
- <u>Stress</u> (during early pregnancy)
- Nutrition during early pregnancy
- Season; 'autumn rebreeders'
- Group housing?

Stress

- Stress factors
 - e.g. mixing moving fighting for rank order insecurity/uncertainty/fear (including contact with man) feeding system indoor climate

Stress

• <u>Stress hormones</u> influence reproductive processes, e.g. (Turner, 2005; Mwanza et al., 2000;Brandt et al., 2007; Razdan et al., 2002)

- oestrous behaviour and ovulation
- hormone levels: LH-surge, P4, E2, PGFM, insulin
- pressure in oviduct, transport of embryos (Day 3)
- embryo development (Day 3, Day 14)

• <u>Intensity</u>, <u>duration (chronic?)</u> and <u>timing</u> of stressful factors determine the consequences for fertility

Most critical period: Day 7-21 of pregnancy

ANIMAL SCIENCES

Stress effects on embryo development

Oestrone-sulphate in plasma

C=Control, FD=food-deprived (D13+14), A=repeated ACTH (D13+14)

Razdan et al., 2004

Establishing groups during pregnancy

	Stable (groups of 13)	Dynamic (groups of 52)			
		week 0	week 2	week 4	р
Rebreeders Total	6,2	7,5	8,8	10,2	NS
Litter size Alive Dead	11,9 0,8	<u>12,5</u> <u>0,7</u>	12.0 <u>0,7</u>	11,8 0,9	P<0.05 P<0.05

Van der Mheen et al, 2003

Stress in group housing

 \Rightarrow Group housing (2013; NL within 4 days)

Mixing involves stress, but need not lead to fertility problems (keep all stress factors under control)

- peaceful introduction in the group
- sows need 'space' to establish rank order
- avoid agression around feeding station and lying areas
- create security for sows

Factors affecting farrowing rate

- Previous lactation
- Insemination time and quality
- Stress (during early pregnancy)

- Nutrition during early pregnancy

- Season; 'autumn rebreeders'
- Group housing?

Feeding level early pregnancy

Farms with group housing (180-1000 sows) (Kongsted, 2004):

- \Rightarrow Sows with <u>higher increase in backfat</u> during early pregnancy had a higher farrowing rate
- ⇒ Sows with <u>high feed intake</u> (eating in more than 20% of observations during feeding) have higher litter size and farrowing rate

Possible mechanism:

- 1. through rank order / stress effects
- 2. through metabolic effects
 - e.g. IGF-1 => uterine secretions (?)

Feeding level early pregnancy (sows)

Feeding level (kg)*	1.0	2.4	3.8
#sows	428	427	419
Total born	14.9a	1.5.1a	<u>15.4b</u>
Farrowing rate	86.4	88.5	86.9 <mark>(?)</mark>
Culling before farrow	5.2	3.1	1.9

- From Day 3 to Day 30 after insemination
- * Additionally, some straw was supplemented

Sorensen and Thorup, 2003

Feeding level early pregnancy

Ensure sufficient daily feed intake in sows

- .. during first month of pregnancy
- .. <u>submissive sows</u>
- .. sows with low body condition

NB Feeding stations: daily check of visits

NB In **gilts**, a high feeding level <u>may</u> be detrimental

Day 0-15 (Jindal et al., 1996) 2.6 kg (2M) => Day 30: 66% survival 1.9 kg from Day 1 => Day 30: 86% survival 1.9 kg from Day 3 => Day 30: 77% survival Day 0-7 (Quesnel et al., 2010) 4 kg vs 2 kg in first week => Day 27: 85% survival

Factors affecting farrowing rate

- Previous lactation
- Insemination time and quality
- Stress
- Nutrition during early pregnancy
- Season; 'autumn rebreeders'
- Group housing?

Autumn rebreeders 2002-2005

Autumn rebreeders 2002-2005

WAGENI N UNIVERSITY CES

(Hoetelmans, 2006)

Autumn rebreeders

	Problem farm		
	No	Yes	
Number of farms	12	14 (=54%)	
Poor indoor climate	0%	43%	
BCS onset of pregnancy	3.0±0.2	2.7±0.6	• • • •
BCS 2mo of pregnancy	3.8±0.4	3.3±0.6	Geudeke, 2004
Group housing	33%	79%	
Number of farms	56	40 (=42%)	_
Group housing (within 3d from insem.)	32%	60%	Geudeke,
 ESF+straw: 12.5% (1 of 8) other systems: no effect 			2008

Autumn rebreeders: mechanism?

(Peltoniemi et al., 2000 -)

- It's 'nature'; sows of wild boar do not show oestrus in autumn
 - Change in oestrous behaviour?
 - Lower progesterone due to lower LH release?
- Light or Temperature?
 - In 'hot' summers ; lower feed intake lactation
 - Cold nights in autumn?

NB Most "Multi-stressor" !

Conclusion 'autumn rebreeders'

- Risk seems higher in group housing systems
 - Ensure good indoor climate (especially at temperature changes in autumn)
 - Ensure good body condition of sows (feed intake lactation!)
 - Ensure good feed intake during wk2+3 of pregnancy (\rightarrow LH)

Factors affecting farrowing rate

- Previous lactation
- Insemination time and quality
- Stress
- Nutrition during early pregnancy
- Season; 'autumn rebreeders'

- Group housing?

Group housing

Project: Succes factors and risk factors for group housing (Van der Peet-Schwering et al., 2009)

- 68 farms with group housing within 4 days
 - Reproduction (farrowing rate, litter size,...
 - Welfare (e.g. skin lesions, claw problems)
- systems: ESF (n=34), ESF+straw (n=20), free access stalls (n=6), trough feeding (n=7)
- detailed interview/enquiry + measurements

Success factors for farrowing rate

	25% lowest	25% highest
Farrowing rate parity 1	<83,2 %	>90,9 %
Space allowance during pregnancy (m ² / sow)*	2.1	2.6
"management skills" (structure, consistency, strict schedule, taking measurements,)	50%	76%

* required: 2.25 m² for groups >40, -10% for groups >40

Van der Peet-Schwering et al., 2009

In conclusion

First month of pregnancy and preceding lactation period are crucial for litter size and farrowing rate

- Avoid high <u>lactational weight losses</u> (keep < 10-12%)
- Ensure good timing + hygiene of <u>insemination</u>
- Avoid or control <u>stressful</u> circumstances [stress accumulates!]
- Ensure sufficient <u>feed intake</u> during early pregnancy
 - Adjust the level of feed (and protein) to the individual needs of sows

Final remark

It's not the farm but the farmer that is the key to success ..

- management skills
- individual needs of sows

WAGENINGEN UNIVERSITY ANIMAL SCIENCES